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ABSTRACT

Multiple population-period transient spectroscopy (MUPPETS) is a two 

dimensional ultrafast time resolved spectroscopy technique. MUPPETS uses three pairs of 

optical pulses over two time periods to separate homogeneous and heterogeneous causes 

of rate dispersion. This dissertation details improvements to the MUPPETS optical 

assembly enabling measurements on systems that previously fell outside of the MUPPETS 

2-ns time window.  In addition, the theoretical groundwork is laid to unveil the hidden 

coordinate controlling rate exchange using 2D and 3D correlation functions.  

The first project details improvements made to the MUPPETS assembly. A detailed 

method was developed to eliminate astigmatism, coma, and spherical aberration from the 

MUPPETS optical assembly. A slow response photodiode was built to correct for long 

term power fluctuations in MUPPETS signals. A double modulation scheme was 

introduced by the addition of a second chopper to eliminate the detection of background 

signals. In addition, other concerns are discussed.   

The second project develops a simple, but general, model that allows 

multidimensional correlation functions to be calculated for systems that exhibit 

nonexponential kinetics. Nonexponential kinetics imply the existence of at least one slow 

variable other than the observable, that is, the system has a “hidden” coordinate.  

Homogeneous and heterogeneous mechanisms are both included, and slow exchange of 

the rates is allowed.  This model shows that 2D and 3D correlation functions of the 

observable measure the distribution and kinetics of the hidden coordinate controlling rate 
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exchange.  Both the mean exchange time and the shape of the exchange relaxation are 

measurable.   

The fourth project utilizes the rotation of PM597 to probe the local properties of 

SDS micelles. In traditional 1D experiments, solute rotation in micelles is known to exhibit 

rate dispersion. This rate dispersion has commonly been attributed to local anisotropy or 

heterogeneity in the local viscosity. Polarized MUPPETS is used to resolve this conflict. 

This 2D technique shows that heterogeneity in the local viscosity is responsible for 87% 

of the rate dispersion in opposition of the more widely accepted “wobble-in-a-cone” model. 

This result suggests that on the subnanosecond timescale, the solute sees only one strong 

fluctuation of the micelle structure.  

The final project measures the rotation anisotropy of PM597 with polarized pump-

probe spectroscopy in a variety of ionic liquids and concentrations. The rotation of PM597 

is measured in CnMIM:BF4 (χ = 0.2) and acetonitrile, where n = 2, 4, 8, and 12. In addition 

the rotation of PM597 was measured in acetonitrile and C12MIM:BF4 at χ = 0.0, 0.2, 0.4, 

and 0.6. Rate dispersion was measured in sample; however, the magnitude of rate 

dispersion was within the noise level of the MUPPETS experiment.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Non-exponential kinetics often arise as chemical processes become more complex. 

When a chemical process possesses a non-exponential rate decay, the presence of multiple 

rates is implied. Such a process is known to exhibit rate dispersion. Two general 

mechanisms are capable of resolving the cause(s) of rate dispersion. In the first mechanism, 

the decay of individual molecules is inherently non-exponential where every molecule 

undergoes a multistep relaxation process. This model is homogeneous. In the second 

mechanism, sub-ensembles of the system experience an exponential relaxation process. 

Averaging of different sub-ensembles results in an overall non-exponential decay. This 

model is heterogeneous. Standard one-dimensional experiments are capable of measuring 

the magnitude of rate dispersion present; however, they are not capable of resolving 

whether the underlying chemical process is homogenous or heterogeneous in nature.  

The Berg group employs a two-dimensional ultrafast spectroscopy technique 

known as MUPPETS (Multiple Population-Period Transient Spectroscopy) which is 

capable of separating homogeneous and heterogeneous causes of rate dispersion.  This 

dissertation discusses four topics: 1) Technical improvements made to the MUPPETS 

experiment to allow for measurements on more complicated systems. 2) The generation of 

a model that allows multidimensional correlation functions to measure the exchange time 
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of subensemble populations in systems that exhibit heterogeneous rate dispersion. 3) The 

discovery of rate heterogeneity in sodium dodecyl sulfate (SDS) micelles by measuring the 

rotational anisotropy of a solute molecule. 4) The anisotropy of solute rotation in ionic 

liquids.  

The work described within produced two published articles and relate to Chapters 

3 and 4. Chapter 2 discusses the technical improvements that were required to study more 

complex systems with MUPPETS and the techniques used to eliminate optical aberrations 

from the optical setup. Chapter 3 discusses the generation of a model used to extract 

information from multidimensional correlation functions and is published as: Berg, M. A.; 

Darvin, J. R. Journal of Chemical Physics 2016, 145, 054119. Chapter 4 discusses the 

measurement of rate heterogeneity in SDS micelles and is published as Darvin, J. R.; Berg, 

M. A. J. Phys. Chem. Lett. 2019, 10, 6885-6891. Chapter 5 discusses the anisotropy of 

solute rotation in ionic liquids. An additional journal article is anticipated that includes the 

results from Chapter 4 and results from experiments in progress on a second micelle 

system.   

1.2  Multiple Population-Period Transient Spectroscopy  

Multiple Population-Period Transient Spectroscopy (MUPPETS) is a two-

dimensional time resolved spectroscopy technique that is capable of resolving the cause of 

rate dispersion on the picosecond time scale across the evolution of two time periods.  A 

schematic for the MUPPETS experiment is shown in Figure 1.1a and is described as 

follows: Two simultaneous laser pulses (1b and 1c) enter the sample at an angle 

intersecting to form a spatial grating of excited states (red). After a time τ2, a second pair 

of simultaneous pulses (2a and 2b) create a second spatial grating (blue) in the opposite 
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direction. Molecules that interacted with each pulse pair (black) form a vertical grating. 

After a second time τ2, pulse 3c is diffracted from the vertical plane formed by the black 

regions. The diffracted signal is combined with pulse 3a for heterodyne detection. 

Diffraction from the black regions permits only the signal caused by the interaction of pulse 

pair 1 and pulse pair 2 to be measured. In the MUPPETS experiment, the first time period, 

τ1, is set a fixed time delay. The signal is then measured by varying the second time period 

τ2. As the fixed time τ1 is increased, fast decaying molecules present in the system will 

decay to the ground state while slowly decaying molecules remain in the excited state; 

therefore, increasing the fixed time τ1 allows slower sub-ensembles to be isolated and 

measured. In other words, τ1 acts as a rate filter enabling the detection of rate heterogeneity.  

The experiment described above requires six laser pulses. In theory, the same 

measurements could be made with only three laser pulses; however, the six pulse geometry 

(Figure 1.1b) allows lower order two, three, and four beam signals to be removed due to 

mismatched wave-vectors. The optical assembly required for the MUPPTES experiment is 

shown in figure 1.2. Polarization control of each pulse pair allows the rotational dynamics 

of probe molecules to be measured.  

1.3  Measuring a Hidden Coordinate: Rate Exchange Kinetics from 3D 

Correlation Functions  

 Rate dispersion has been observed in a variety of systems such as supercooled 

liquids, polymers, biomolecules, ionic liquids, microstructures, and nanoparticles. The 

presence of rate dispersion indicates a non-Markovian system. In a Markovian process, the 

future states of the system are independent of the past states of the system; thus, a non-
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Markovian process implies a “hidden coordinate” that retains memory of the past is 

present. The goal is to determine the physical process responsible for the hidden 

coordinate; however, it cannot be directly observed.  

One-dimensional experiments measure a systems evolution over one time interval. 

They are capable of measuring the mean rate and quantifying the total rate dispersion. They 

cannot assign the rate dispersion to specific processes. Two-dimensional measurements 

measure a systems evolution over two time intervals and are capable of determining the 

fraction of rate dispersion that is due to heterogeneity. The rates of the different sub-

ensembles can be used to determine the probability distribution of the hidden coordinate. 

In systems that equilibrate, a single molecule will eventually experience all of the rate sub-

ensembles. This known as rate exchange. No known experiments are able to measure rate 

exchange.  

Three-dimensional correlations functions have been used in the past to quantify rate 

exchange; however, the methods are not rigorous and could yield incorrect results. This 

project developed a model that is general enough to apply to real systems and simple 

enough to calculate multidimensional correlation functions. The model contains 

heterogeneous and homogeneous contributions to rate dispersion. It also includes exchange 

between different sub-ensembles that is slow relative to the decay of the observable. This 

model allows well defined measures of the rate exchange dynamics to be made and is able 

to separate that information from contributions cause by other rate altering pathways.  

1.4  Micelle Heterogeneity from the 2D Kinetics of Solute Rotation  

In microstructured materials, the photophysics of solute molecules are used to infer 

local properties. The rotation time of a solute can be used to characterize the local viscosity 
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in micelles by measuring the optical anisotropy. However, in micelles, the one-dimensional 

anisotropy is non-exponential meaning that rate dispersion is present. A simple explanation 

for the rate dispersion is that is reflects rate heterogeneity. Solute molecules could occupy 

different positions within a micelle and experience a different local viscosity. In this 

scenario, each solute would have a defined rotation time and experience a specific 

micoviscosity. A contrasting, but widely accepted, explanation is the “wobble-in-a-cone” 

model. This model is homogeneous, and it assumes that every micelle has the average 

structure, which is strongly layered into a hydrocarbon core, a surface layer of partially 

hydrated head groups, and the aqueous solvent. It further assumes that the probe is confined 

to the surface layer, and this layer is strongly anisotropic. Each solute can only “wobble” 

over a restricted cone of angles at fast times. Large angles are explored by diffusion around 

the micelles at long times. In this model, each solute experiences the fast and slow process. 

One-dimensional experiments cannot distinguish between the competing models.  

Polarized MUPPETS is two-dimensional ultrafast spectroscopy that can separate 

homogeneous and heterogeneous processes. When using polarized pulses, there are four 

unique correlation functions differing by the type of dynamics measured in each time 

interval: rotation–rotation, electronic–electronic, symmetric rotation–electronic, and 

asymmetric rotation–electronic.  The first two can be isolated with measurements at only 

two polarization combinations: ΔA+ +(τ2, τ1) and ΔA− +(τ2, τ1). In this study, pyrromethene 

597 (PM597) was used as the solute inside sodium dodecyl sulfate (SDS) micelles. 

MUPPETS measurements were made to this system at nine τ1 values. The resulting 

rotation–rotation surface shows that the 2D anisotropy rate increases systematically as τ1 

increases. This result indicates rate heterogeneity is important in the rotational dynamics. 
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A quantitative interpretation was performed using non-parametric statistical 

methods. These methods relied on a model generated from the measured 1D anisotropy 

and generated 2D decay spectra. Analysis of the decay spectra determined the fraction of 

the excess rate dispersion that is due to rate heterogeneity = 0.87. Further analysis created 

a possible distribution of microviscosities seen by the solute. The distribution suggests that 

a majority of the solutes experience a high local viscosity, much higher than the viscosity 

of dodecane, which is identical to the micelle tail. Because the center of the micelle, where 

viscosity would be the highest, occupies a small volume, it is unlikely the majority of 

solutes reside in the center of the micelle. Instead, the exclusion of water from the micelle 

interior constrains the motion of the SDS tails creating a high local viscosity. Micelles are 

held together by weak forces, which allows for large fluctuations in their instantaneous 

structures. Rate heterogeneity also arises from the diversity of structures from micelle to  

micelle.  

1.5 Rotational Anisotropy in Ionic Liquids 

Chapter 5 of this dissertation discusses a project that did not result in a publication. 

Ionic liquids (ILs) are organics salts that can exist in the liquid state. Because salts do not 

evaporate, ionic liquids have been considered for many industrial uses; however, ionic 

liquids exhibit non-exponential kinetics. Their dynamics are not well known. Solvation 

dynamics studies in micelles have shown the non-exponential kinetics are due to spatial 

heterogeneity caused by polar and non-polar regions within the liquid. Simulations back 

up this claim. Measuring the amount of heterogeneity in the rotation of a solute is a logical 

next step.  
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 The 1D rotational anisotropy of PM597 was measured in several ILs. Because the 

rotation time of PM597 lies outside of our time resolution, acetonitrile was added to reduce 

the rotation time. In the first set of experiments, the mole fraction of ILs (χ = 0.2) was held 

constant and the chain length of the substituents on the imidazolium ILs (CnMIM:BF4) 

were varied (n = 2,4,8, and 12). In the second set of experiments, the mole fraction of the 

ionic liquid was varied. Rotation times became longer as the concentration of ionic liquid 

increased. All samples exhibited rate dispersion. Each IL exhibited similar non-exponential 

behavior. Ultimately, MUPPETS experiments were not performed on ILs because the 

amount of rate dispersion was less than expected. Increases in rotation times at long τ1 

values were expected to lie within the expected noise levels.  
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Figure 1.1 Schematic of the MUPPETS experiment. (a) The upper and lower panels 

represent fast and slowly relaxing subensembles within the sample. Two simultaneous 

pulses (1b and 1c) from different directions intersect in the sample to create a spatial grating 

of excited state molecules (red). After a time τ1, a second pair of pulses (2a and 2b) create 

a second grating of excited molecules (blue). The slow subensemble now contains vertical 

diffraction planes formed  by regions that interacted twice (black), once (red and blue), and 

never (white). After an additional time τ2, pulse 3c is diffracted from these planes and is 

combined with pulse 3a for heterodyned detection. The diffraction isolates the signal 

unique to one interaction with the first excitation and one interation with the second 

excitation. (b) A representation for the pulse geometries used in the experiment. The brown 

circle is a lens. The orange cuboid represents the sample. The black circle shows a cross 

section with pulse lables.(Reproduced from Haorui Wu and Mark. A. Berg J. Chem. Phys. 

2013, 138, 034201 https://doi.org/10.1063/1.4773982 with the permission of AIP 

Publishing.) 
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Figure 1.2 MUPPETS optical system: polarizers (P), lenses (L), gratings (G), delay lines 

(DL), meniscus lenses (ML), phase plates (PP), neutral density filter (ND), variable neutral 

density filter (VND), masks (M), sample (S), pinhole (PH), and photodiodes (PD). The 

locations of the coma and spherical aberrations adjustments are shown. The pulses chopped 

in the double modulation scheme are shown.
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CHAPTER 2 

MULTIPLE POPULATION-PERIOD TRANSIENT SPECTROSCOPY: 

THEORY AND TECHNICAL IMPROVEMENTS 

2.1 Introduction 

Multiple population-period transient spectroscopy (MUPPETS) is a 

multidimensional spectroscopy technique that utilizes a series of six laser pulses to isolate 

signals from desired sub-ensemble populations over two periods of time evolution. This 

technique enables the separation of homogeneous and heterogeneous processes in systems 

that exhibit non-exponential relaxation (rate dispersion). The current version of MUPPETS 

uses polarized optical pulses to measure the rotational anisotropy of solute molecules. The 

local viscosity of the surrounding medium governs the rotation rate of a solute molecule. 

By measuring the 2D anisotropy of a solute, polarized MUPPETS provides insight into the 

structure of materials or liquids on the nanometer scale.  

Acquiring a MUPPETS signal requires a complex optical assembly that re-images 

the lines of a diffraction grating in the sample. Interferometric control of these spatial 

gratings is required to measure the MUPPETS signal. The concept of the assembly is 

shown in Figure 1.2. The optical assembly generates nine lasers pulses that share a single 

optical train. The use of a single optical train provides the necessary phase stability to 

perform the MUPPETS experiment; however, each optical component must be placed 

perfectly along 
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the optical axis to achieve spatial overlap of each laser pulse at the sample position. Slight 

deviations from the perfect position and alignment of each optical component leads to 

optical aberrations. Optical aberrations are a property of an optical system that cause 

deviations in the path of light in relation to the optical axis. Aberrations result in blurred 

images formed by the optical system. This chapter discusses three optical aberrations and 

the methods developed to eliminate them from the MUPPETS optical assembly. 

Astigmatism, chromatic, coma, and spherical aberration will be discussed. Laser beams are 

referenced in accordance with the naming scheme shown in Figure 1.2. In addition, several 

other improvements to MUPPETS are discussed. The work described here is fairly detailed 

and vital for one who must build a large, complex optical assembly; however, it is not 

appropriate for publication.  

2.2 Optical Aberration Theory 

This section discusses the theory of astigmatism, coma, and spherical aberrations.  

2.2.1 Spherical Aberration 

Spherical aberrations are found in optics with a spherical surface. In an optic with 

a spherical surface, the thickness and curvature of the lens varies with position. Light that 

interacts with the spherical surface off center will refract at different angle than light that 

interacts with the center. This results in different foci for light that interacts off center of 

the spherical surface. Spherical aberration can be reduced and/or eliminated by two 

methods. The first method uses at least one additional lens, such as a meniscus lens, to 

counteract the aberrations caused by a single spherical lens. The second lens is added to 

counteract the variation in angles on the spherical lens. The second method is to use an 
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aspheric lens. An aspheric lens has a surface profiles that are not spherical. In each case, 

the shape of the lens is designed by ray tracing software. 

2.2.2 Comatic Aberration 

Comatic aberrations, often referred to as coma, are cause by a lens that is off-axis 

(tilted) from the path of light. Coma causes light that interacts off-center of a tilted lens to 

focus at a different point and have a variation in magnification than light that interacts with 

the center of tilted lens. In a free space optical setup, such as a laser table, coma can be 

corrected by adding a tilt adjustment for angle of the lens.  

2.2.3 Astigmatism 

Astigmatism is an aberration that causes light propagating on orthogonal planes to 

have different focal lengths. It is similar to coma in that is can be caused by off axis beam 

propagation (tilted lenses). Astigmatism can be intentionally introduced to an optical 

system by the use of a cylindrical lens.  

2.3 Diagnostic Design 

This section discusses the diagnostic system used to eliminate optical aberrations 

in the MUPPETS optical assembly. This section and sections 2.4 and 2.5 discuss axes in 

the optical plane. The x-axis is defined as parallel to the laser table, the y-axis as 

perpendicular to the laser table, and the z-axis as the optical path.  

 2.3.1 Outside Laser Source  

The process of eliminating optical aberrations from an optical system is easiest to 

achieve with a Gaussian laser pulse. Femtosecond laser systems require daily attention and 

great care to ensure the pulses remain Gaussian in shape. During the installation of an 

optical assembly, optical aberrations and/or misalignment can lead to blurred or distorted 
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images of a laser pulse when imaged onto a camera. This can lead to uncertainty in the 

beam profile of the ultrafast pulse. For that reason, it is beneficial to use a secondary laser 

source with a more reliable beam profile. Most commonly, gas lasers are utilized in the 

alignment of an optical system. However, our optical assembly is designed for 520-530 nm 

laser pulses. A typical HeNe laser would cause chromatic aberration in the MUPPETS 

optical assembly. Chromatic aberrations are caused by the diffraction of different 

wavelengths through refractive medium at slightly different angles. In the MUPPETS 

optical system, chromatic aberrations would also be introduced at G1 and G2 due to Bragg 

diffraction. Gas lasers that emit near 530 nm are expensive. For that reason, a 532 nm diode 

laser module was selected for the installation and alignment of the MUPPETS optical 

system.  

2.3.2 Microscope Imaging System 

The spatial gratings formed in the MUPPETS experiment are generated by 

reimaging the lines of G1 (Figure 1.1). The line width of the gratings used in the MUPPETS 

optical assembly is approximately 10 μm. To achieve a large enough signal size, 20 spatial 

gratings need to be generated in the sample; therefore, the spot size on G1 is required to be 

200 μm. Imaging the laser beams at G2 and the sample requires the use of a microscope 

imaging systems to view the laser beams on a camera as they approach their focal point. A 

simple microscope setup was employed to view the beams on a CMOS camera. An aspheric 

lens must be used in the microscope to eliminate the possibility of optical aberrations in 

the imaging system. The lens is mounted with an opto-mechanical lens mount that has tilt 

corrections in the x-axis and y-axis of the optical plane. The lens mount is placed onto an 

opto-mechanical mount that has translation stages along the x-axis and z-axis of the optical 
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plane. The x-axis translation is used for alignment of the aspheric lens. The z-axis mount 

is used to adjust the focal point of the microscope. This method is preferable to moving the 

camera along the z-axis. A schematic of the microscope is shown in Figure 2.1. A 

magnifying power of 10 was used.  

The positions along the optical path required to be imaged are important. Imaging 

two locations near each focal point is required to observe aberrations that are present in the 

optical system.  The first, and most obvious, location to image is the focal point of the laser 

pulse(s) as determined by perfect lenses. The second location to image along the focal 

plane is just before the focal point where the laser pulses are separated and do not overlap. 

Identical mirror images should be formed at equal distances before and after the focal point. 

When the magnitude of the aberrations is large, they will be present when the laser beams 

are not overlapped. When the magnitude of the aberrations is small, viewing various 

combinations of laser pulses at the focal point is required to determine which aberrations 

are present. The positions in the optical assembly to be imaged will be discussed further in 

section 2.5.  

Alignment of the diagnostic microscope is crucial. Misalignment of the aspheric 

lens will introduce aberrations to the diagnostic. Perfect alignment is achieved with the aid 

of a transmissive diffraction grating. The mount that houses the grating allows for rotation 

around the x-y plane. Transmissive diffraction gratings diffract light symmetrically in 

opposite directions. If the beams are not symmetric when viewed on the camera, then the 

aspheric lens is tilted. The diffraction from the grating must be viewed along the x-axis and 

y-axis to ensure the aspheric lens is not tilted in either direction. This method is more 

accurate than aligning the lens tilt via back reflections.  
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2.4 Intentional Examples of Optical Aberrations 

Determining the types of optical aberrations present in an optical assembly can be 

difficult.  Often times, after the initial installation of an optical system, multiple aberration 

will present themselves. The presence of more than type of aberrations can lead to 

uncertainty into what type of aberrations are present and which type dominates. Section 

2.4 details what astigmatism, coma, and spherical aberrations look like in the MUPPETS 

optical assembly.  

2.4.1 Astigmatism in MUPPETS 

In the MUPPETS optical assembly, astigmatism can be generated by two methods. 

The first is in the installation of G1 and G2. The lines on G1 must be incident with the 

incoming laser beam. The lines on G2 must be opposite of incidence. Diffraction occurs 

on the surface with lines in a transmissive grating. This implies that the ±1 orders of 

diffraction travel through the diffractive optical material of G1. G2 must be installed so 

that the ±1 orders of diffraction generated by G1 travel through the optical material of G2 

before diffraction occurs for a second time. Failure to install the transmissive gratings in 

this order will cause an astigmatism resulting in different foci for the sagittal and tangential 

planes along the optical axis.  

The second manner in which an astigmatism can be generated is by improper 

positioning of L3 relative to G2. The three incoming laser beams onto G2 must overlap on 

the grating surface. When L3 is improperly positioned, the laser pulses will not overlap on 

G2.  The focal point of the sagittal plane is defined as diffraction generated by G2. The 

focal point of the tangential plane is defined as the alignment of L3 relative to G2. G2 must 
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be positioned at the focal length of L3. An astigmatism can caused by translating L3 1 mm 

about the z-axis. An example is shown in Figure 2.2.  

2.4.2 Comatic Aberration in MUPPETS  

Comatic aberrations in the MUPPETS optical assembly are caused the by lens tilt 

relative to the optical axis. Coma may be caused by any of the lenses in the optical system, 

but lenses that contain more laser beams result in a greater amount of coma. Lenses in the 

optical assembly are mounted by epoxying each lens to an aluminum mount and then 

attached to magnetic opto-mechanical mounts for fixture to the laser table. Tilt in the x-

axis could be caused by misalignment of the opto-mechanical mounts.  Tilt in the x-axis or 

y-axis could be caused by unequal amounts of epoxy used to mount the lenses. Comatic 

aberrations in any combination of lenses in the MUPPETS optical assembly can eliminated 

by adding adjustable tilt to a single lens. Adding a mount that allows for adjustable tilt in 

the x-axis and y-axis to L5 counteracts coma caused by any other lens in the optical 

assembly. Figure 2.3 shows an example of coma by intentionally tilting L5 about the y-

axis. Figure 2.3a shows coma when viewed 4 mm before the focal point as defined by 

perfect lenses. Lines have been added to emphasize the coma. Figure 2.3b shows the coma 

viewed at the focal point of beams 2a and 2c. It is clear that beams 1a and 1c possess a 

different focal point. 

2.4.3 Spherical aberration in MUPPETS 

Spherical aberrations in the MUPPETS optical assembly is caused by lens L4 and 

L5. Spherical aberration is corrected by the addition of two meniscus lenses, ML1 and 

ML2. Each meniscus lens must be shaped and positioned so that the spherical aberration 

caused by varying refractions angles on L4 and L5 is counteracted. An example of spherical 
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aberration in the MUPPETS optical assembly is shown in figure 2.4. ML2 was translated 

−1 cm along the z-axis of the optical plane. The image was taken 4 mm before the focal 

point. The added lines emphasize the spherical aberration. 

2.5 Installation Method for the MUPPETS Optical Assembly 

This section discusses, in detail, the methods required to eliminate optical 

aberrations from the MUPPETS optical assembly. 

2.5.1 Defining the Optical Plane 

The optical plane of an optical system must be defined before an optical assembly 

can be installed. The optical plane is defined by placing an iris before L1 and after P2. The 

holes on the optical table can be used to define the path parallel to side of the optical table. 

Two mirrors are used to align the femtosecond laser onto both irises simultaneously. 

Additional irises are placed before the predetermined locations of L3 and L5 to aid the 

installation of lenses. After the optical plane is defined, the outside laser source is inserted. 

It is inserted into the defined optical plane by using two additional mirrors to align it onto 

the irises before L1 and after P2. 

2.5.2 Installation of the Optics before G2  

The first lens (L1) is mounted with an opto-mechanical mount that has translation 

stage along the z-axis. The installation of L1 into the optical plane requires the alignment 

of the forward propagating laser beam and the backwards reflection from L1. The forward 

propagation should pass through two of the irises. The backward reflection should pass 

through the iris before L1. The initial position of G1 should be near the focal point of L1. 

The mount used with G1 has x-axis and y-axis tilt, translation on the x,y, and z planes, and 

rotation around x-y plane. The back reflections from G1 should be adjusted to go straight 
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back along the optical plane. At this point, the diagnostic setup is employed. The diffraction 

of G1 should be aligned along the y-axis of the optical plane. The spot size on G1 should 

completely fill the 200 μm pinhole that is on the surface of G1. Its position along the z-axis 

can be adjusted with the translatable mount on G1. The spot size can be confirmed by 

counting the number of grating formed by imaging the ±1 orders of diffraction at their focal 

point. Twenty gratings should be formed.  

The installation of L2 is important. The three beams formed at G1 must propagate 

parallel to each other in between L2 and L3. The opto-mechanical mount for L2 contains 

a translation stage in the z-axis. When L2 is at its focal distance away from G1, the three 

laser beams will propagate parallel to each other. Measuring the correct distance exactly is 

difficult. To determine the correct location of L2, a mirror(s) can be used to view the laser 

beams a long distance. When L2 is in the correct position, it will be clear that the beams 

are parallel to each other. Once the beams are parallel, L3 can be installed.  

2.5.3 Installation of G2 through ML2 

The alignment of G2 should be performed with only one input beam. The back 

reflections are aligned with the tilt adjustment of the grating mount. The diffraction of G2 

should be aligned along the x-axis of the optical plane. The alignment of the three laser 

beams onto G2 can be adjusted by the translation of L3. The nine laser beams generated at 

G2 should form a square pattern when viewed before the focal point. This is a good first 

approximation for the position on L3. The fine adjustment in the position is made by 

viewing select combinations of laser beams through a pinhole on the surface of G2. Laser 

beams 1b and 2b and beams 3a and 3c should have identical focal points when L3 is 

properly positioned. To determine if each pair of laser beams have an identical focal length, 
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cross sections of images for each pair can be plotted. Since beams 3a and 3c are formed by 

diffraction at G2, they should be used as the reference for beams 1b and 2b. When L3 is at 

the correct position, perfect gratings should be formed by both pairs of beams. When L3 is 

in an incorrect position, the gratings will be imperfect. This means the dark spots will not 

be completely dark as shown in Figure 2.5a When L3 is in the correct position, the dark 

spots will be completely dark as shown in Figure 2.5b. Cross sections of images can be 

obtained in MATLAB.  

The installation of ML1, L4, L5, and ML2 is difficult and easiest achieved by a 

multistep process.  The first critical step is to position ML1 and L4 so that the laser beams 

propagating from L4 are parallel. Once ML1 and L4 are installed, L4 should be translated 

along the z-axis until the beams propagate parallel to each other. Two 3.5” mirrors can be 

used to kick the beams across the room to check for parallel propagation. It is also crucial 

to ensure the laser beams do not clip the edge of the lens mounts. If the beams do clip the 

edge of the lens mounts, move ML1 and L4 closer to G2 along the z-axis and repeat the 

process over. It is important to note that the beams will expand when the delay lines are 

inserted. It is imperative to account for this when checking to see if any clipping occurs.  

The diameter of the laser beams after G2 can be as large as 1.5 cm; thus, centering 

the beams on the lenses after G2 is quite difficult with L3 in place. The installation of ML1, 

L4, L5, and ML2 is easiest achieved by removing L3 and installing the lenses in the 

opposite order since beam 3 is collimated when L3 is not in place. Installing the optics in 

the reverse order allows back reflections to be aligned with greater accuracy. Great care 

must be taken to correctly replace L3. Employing the diagnostic a second time at G2 can 

give confidence L3 is accurately replaced.  
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The elimination of spherical aberration from ML1 and L4 is achieved by placing a 

3.5” mirror after L4 and directing the laser beams straight back along the optical plane. The 

beams are steered into the microscope diagnostic with a pellicle beam splitter that has a 

thickness of 1 μm. The thinness of a pellicle beam splitter displaces the lasers beams a 

negligible amount. The nine laser pulses should be in a square pattern when spherical 

aberration is not present. When spherical aberration is present, the edge beams (beams 1b, 

2b, 3a, and 3c) will have a different focal point than the corner beams (beams 1a, 1c, 2a, 

and 2c). The focal point, as determine by perfect lenses, should be determine by beams 3a 

and 3c since they are both generated on the surface of G2. If the magnitude of spherical 

aberration is large, a square pattern will not be seen when viewed before the focal point 

and will have a pattern similar to the example in Figure 2.4. Spherical aberration 

corrections are performed by translating ML1 along the z-axis. It is possible the z-axis 

micrometer on ML1 will not be able to translate a great enough distance. When this occurs, 

the opto-mechanical mount of ML1 must be moved by hand in the appropriate direction 

along the z-axis; however, it is likely ML1 will be aligned incorrectly. ML1, L4, L5, and 

ML2 will have to be reinstalled. The location of L4 should not change. The laser beams 

should still propagate parallel to each other in between L4 and L5. If a significant amount 

of coma is observed in ML1 and L2, the opto-mechanical mounts can be rotated around 

the x-z optical plane. Rotating optical mounts will likely result in the need to reinstall the 

optics. At this stage, if only a small amount of coma is present, it can be ignored. Coma 

will be eliminated later in the installation process.  

After the elimination of spherical aberration from ML1 and L4, aberrations must 

be eliminated from L5 and ML2. The microscope diagnostic system must be setup at the 
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focal point of the optical system as defined by beams 3a and 3c (sample position). Spherical 

aberration is eliminated as described in the preceding paragraph. To eliminate coma, a pitch 

and yaw platform was added to the opto-mechanical mount of L5. Pitch refers to rotation 

about the y-axis, and yaw refers to rotation around the x-axis. The platform allows for ±4° 

around both the x-axis and y-axis. A combination of tilt about the x-axis and the y-axis is 

possible. Coma will be seen before the focal point if its magnitude is large. An example is 

shown in Figure 2.3. It is best to adjust the tilt of L5 one axes at a time if it appears coma 

is present in both the x and y planes. When an adjustment to the tilt is made, the lens must 

be translated along the same axes to keep the lens centered in the optical plane. Placing a 

reference point on the computer screen for beam 3b will aid translation adjustments. The 

process is continued until coma is eliminated.  

Elimination of aberrations when the beams are viewed before the focal point is not 

sufficient. Various combinations of beams must be viewed at the focal point of beams 3a 

and 3c. The procedures detailed above will be followed to eliminate aberrations that are 

small in magnitude. The gratings formed by a combination of two beams can be evaluated 

by viewing cross sections of saved images. Combinations of three or more beams should 

be evaluated for consistency. The pattern should be consistent through the entire overlap 

of beams. Any inconsistency is caused by remaining aberrations. Detailed examination of 

two beam pairs will be required to determine the cause. A pinhole can be setup at the 

sample position with micrometers along the x, y, and z axes to map the path of individual 

beams. The center of an individual beam can be found by monitoring the intensity on a 

photodiode at various points along the z-axis. The x, y, and z reading of each micrometer 

must be recorded. Three dimensional scatter plots will yield great detail about the overlap 
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of the laser pulses at the sample position. Spherical aberration or coma adjustments can be 

made to improve the beam overlap.  

2.6 Other Improvements to MUPPETS 

Developing a method to eliminate optical aberrations from the MUPPETS optical 

assembly was not sufficient to perform the experiments discussed in Chapter 4. The 

complete anisotropy decay was not accessible to the two-nanosecond time window of the 

MUPPETS experiment. The signal size and stability of a six pulse experiment can depend 

on a variety of factors. These factors includes: long term fluctuations in the laser power, 

background signals that vary with power, minuscule variations in the laser alignment, or 

inaccurate alignment of the delay lines. Solutions to these problems are discussed in this 

section.  

2.6.1 Slow Photodiode to Correct for Power Fluctuations 

Femtosecond laser systems, especially those with nonlinear optical components, 

often experience power drift during the course of day. The MUPPETS experiment requires 

a sequence of eight measurements that lasts a duration of 4-5 hours. Power drift is expected 

to occur within that timeframe. To account for power drift in measured signals, a slow 

response photodiode was designed and constructed to measure and record the fluctuations 

in the laser power during experiments. The specifications of the photodiode’s circuitry 

were designed to match the requirements of the lock-in detection system used to detect 

MUPPETS signals. The lock-in amplifier had two electronic requirements. The first was a 

300 ms time constant. The second requirement was the electronic signal must have voltage 

in the range of ± 1 - 10 V. Silicon photodiodes typically have a response times in the 

nanosecond to microsecond range. Connecting the photodiode to a simple RC circuit can 
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increase the response time. The response time is characterized by τ = RC, where τ is the 

response time (seconds), R is the resistance (Ohms), and C is the capacitance (Farad). This 

alone is not an adequate. The response is not always linear, and the voltage may not be 

great enough. An amplifier circuit solves both of these problems by guaranteeing a linear 

response (within the limitations of the photodiode) and increasing the power to the ± 1 - 10 

V range. A 300 MΩ resistor, a 1μF capacitor, and an operational amplifier were used in 

the circuit for the photodiode detector.  

The slow response detector was not as successful as planned, but nonetheless, 

improved experimental response. The expectation was that the measured fluctuations in 

laser power would correlate to the noise in the experimental signals. This was not observed, 

but the slow response detector reduced the noise of a simple pump-probe signal by an order 

of magnitude. It did not reduce the noise of the MUPPETS experiment, but it did correct 

for long term power fluctuations in a single data collection period and adjusted the signal 

for power fluctuations across multiple data collection periods. The lack of noise reduction 

in MUPPTES signals is likely due to the fact phase noise is the primary source of noise 

and not pulse-to-pulse fluctuations in laser power. 

2.6.2 Double Modulation 

The MUPPETS theory, as shown in Figure 1.1, suggests that the signal detected 

will only be from molecules that interacted with each of the first two pulse pairs. In reality, 

signals from 2, 3, or 4 beam combinations also contribute to the MUPPETS signal. These 

background signals can be accounted for if they remain constant and are small relative to 

the desired signal; however, this was not always the case. The size of the background 

signals were sometimes large in comparison to the MUPPETS signal and the size varied 
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during the course of experiments. An example of variations in the background signal is 

shown in figure 2.6. The variation in the noise levels during the course of an experiment 

could not be correlated to a known cause.  

A double modulation scheme was introduced to eliminate background signals from 

the MUPPETS signals.  Prior to double modulation, a single laser pulse (1c) was chopped 

at 500 Hz. The remaining five pulses had a frequency of 1000 Hz. In the double modulation 

scheme, the original chopper remained in pulse 1c, but the frequency was reduced to 250 

Hz. A second chopper was introduced in the delay line region; thus, pulses 2a and 2b were 

chopped. The frequency of the second chopper was also 250 Hz but at a 90° phase shift.  

In the double modulation scheme, all three pulse pairs only overlapped once every pulse 

cycle and the detection of background signals caused by other pulse combinations is 

undetectable. This, however, reduced the signal size by a factor of two. The signal size was 

artificially increased by replacing the resistor and capacitors in the RC circuits of PD1 and 

PD2. Since V = IR, increasing the resistance of the resistor by a factor of 10 increases the 

voltage of the signal by a factor of 10. The response of the circuit was kept constant by 

reducing the capacitance of the capacitor by a factor of 10. The change in the RC circuit 

increase the signal and the noise by a factor of 10. The change was made to increase the 

signal size on the lock-in amplifier. This was not a necessary change, but it is beneficial to 

the researcher when the signal sizes are not near the minimum detection level of the 

detection system. 

2.6.3 Addition of Optical Elements and other Considerations 

Additional optics were also added to the MUPPETS optical assembly to increase 

the capabilities of the optical assembly. On the ultrafast timescale, the travel time of a laser 
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pulse varies depending on the thickness of the lens. The varying change in travel time is 

accounted for by the addition of silicon windows that we refer to as timing plates. When a 

timing plate is tilted at the appropriate angle, a pulse that travels through the thinner edge 

of a lens and the timing plate will experience the same decrease in travel time as a pulse 

that travels through the thicker center of the lens. In previous versions of MUPPETS, the 

timing plate in pulse 3c was fixed to a mount that contained double differential micrometer. 

The differential micrometer is used to adjust the phase of one pulse pair relative to the other 

two pulse pairs. Phase control was added to the timing plates in pulses 1c and 2b.  

The alignment of the delay lines was imperfect in previous versions of MUPPETS. 

A horizontal displacement was seen at the sample position after the delay line was put into 

place. The prisms used to steer the beams into the delay lines were likely not manufactured 

at perfect 90° angle. The delay line for pulses 2 and 3 contain a right angle change in the 

optical plane to save space on the optical table. Previous versions of MUPPETS used a 

single mirror for the outbound and return path of each pulse. A second mirror was added 

to the return path to correct horizontal displacements in the delay line alignment.  

The power of the femtosecond pulse on G1 must be monitored. At powers greater 

than ~10 mW, self-focusing can occur inside of the grating. Self focusing is a non-linear 

optical effect caused by changes in the refractive index of material due to high intensities 

of electromagnetic radiation. Self-focusing occurs in G1 when the radiant exposure is in 

the range of 1 ∙ 1015 J∙m-2. Figure 2.7a displays an image of pulse 2b when non-linear 

optical effects occur at G1. Figure 2.7b displays an image of pulse 2b when non-linear 

effects do not occur at G1. Figure 2.7c displays cross sections of each image. When self-
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focusing occurs, the MUPPETS signal does not increase as the power increases. The signal 

to noise ratio increases as well.
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Figure 2.1 A schematic of the diagnostic microscope setup. 
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Figure 2.2 An example of astigmatism is shown at G2. (a) Beams 3a and 3c, sagittal plane, 

viewed at their focal point. (b) Beams 1b and 2b, tangential plane, viewed at the focal point 

of 3a and 3c. They possess a different focal point, i.e. an astigmatism. 
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Figure 2.3 (a) Coma viewed 4 mm before the focal point of the MUPPETS optical assembly 

caused by a 1° tilt about the y-axis in L5. Green lines emphasize the effect of coma (b) 

Coma viewed at the focal point of beams 2a and 2c caused by a 2° tilt about the y-axis in 

L5. It is shown that 1a and 1c possess a different focal point.
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Figure 2.4 Spherical aberration caused by a −1 mm translation about the z-axis of ML2 is 

shown 4 mm before the focal point of the MUPPETS optical assembly. Green arrows 

emphasize the effect of spherical aberration. 
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Figure 2.5 (a) Cross section obtained from an image of beams 3a and 3c that possess optical 

aberrations. (b) Cross section obtained from an image of beams 1 and 2 at G2 that are free 

of optical aberrations. 
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Figure 2.6 Background signals for pulse combination 1c, 3a, and 3c (black) and pulse 

combination 1b, 1c, 3a, and 3c (red). Pulse combination 1b, 1c, 3a, and 3c display changes 

in the background signal over time. Solid red represents early times, dashed red line 

represents medium time, and the dotted red line represents long time. The range of time 

covers the duration of a MUPPETS experiment. The signal size at negative times, caused 

by scattered light, remained constant indicating no substantial change in the laser power. 
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Figure 2.7 Non-linear effects in G1 caused by high power is shown. (a) Pulse 3b at 

maximum laser power. (b) Pulse 3b at reduced laser power. (c) Horizontal cross sections 

of 2.7a and 2.7b. 
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CHAPTER 3 

MEASURING A HIDDEN COORDINATE: RATE-EXCHANGE 

KINETICS FROM 3D CORRELATION FUNCTIONS1

                                                 
1 Reproduced from Mark A. Berg and Jason R. Darvin J. Chem. Phys. 2016, 145, 054119 with the  

 permission of AIP Publishing 
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3.1 Introduction 

Rate dispersion—nonexponential relaxation—occurs in a wide variety of systems.  

Notable examples are supercooled liquids,1-7 polymers,8-12 biomolecules,13-19 ionic 

liquids,20-25 and nanoparticles.26-32  The absence of rate dispersion in simpler materials is 

easy to explain.  Exponential relaxation with a single rate implies that the surroundings 

hold no long-term memory about the process being observed; the system is Markovian.  

Conversely, rate dispersion indicates a non-Markovian system and demands some “hidden 

coordinate” that retains memory of the past.33  The ultimate goal is to identify the physical 

process represented by the hidden coordinate.  The proximate problem is to measure the 

properties of the hidden process, even though it is not directly observable.  This paper 

tackles the latter issue.  It uses a general model to show how the kinetics of the hidden 

variable associated with heterogeneous rate dispersion can be measured from a 3D 

correlation function. Standard kinetics are based on one dimensional (1D) measurements—

experiments that monitor the system’s evolution over one time interval.  They measure the 

mean rate and the total size of the rate dispersion from all sources, but nothing more.  In 

particular, they do not distinguish between homogeneous and heterogeneous contributions 

to rate dispersion.  When every molecule has the same nonexponential decay, the 

dispersion is homogeneous.  When different subensembles of molecules having 

distinguishable dynamics, the dispersion is heterogeneous. 

Two dimensional (2D) measurements—those that include evolution over two time 

intervals—offer more.  Previous work has already shown that 2D response functions yield 

the fraction of the rate dispersion that is due to heterogeneity.34,35  This paper will extend 

those conclusions to correlation functions.  In the case of rate heterogeneity, the 
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environmental factors that change the dynamics of different molecules are the hidden 

process, and the mean rate of a subensemble can be used as the hidden coordinate.  Thus, 

2D measurements are a route to learning about the probability distribution of this hidden 

coordinate. 

Questions remain.  In systems that equilibrate and are ergodic, a single molecule 

must eventually move through all the rate ensembles.  In addition to the kinetics of the 

observable, we also want to know the dynamics of exchange between environments: What 

is the mean exchange time?  Is the exchange Markovian and single exponential, or does it 

also show dispersed relaxation?   

Many methods have been proposed to gain more information about complex 

kinetics from a time series of observations: hidden Markov models,36-39 constrained 1D 

correlation functions,40,41 two-event correlation functions,42 multipoint correlations,3 and 

time windowed correlation functions.4  We recently summarized the advantages of 

multidimensional correlation functions, the method pursued here.7  Such functions have 

been calculated for specific systems by a number of groups.7,25,43-67  Often, these studies 

analyzed simulation data and have recognized that three dimensional (3D) correlation 

functions should be sensitive to rate exchange.25,53-66  More recently, 3D correlation 

functions have been applied to single-molecule data.7,67  In all these papers, the connection 

between 3D correlation functions and rate exchange has been argued at a qualitative level, 

and the quantification of the exchange dynamics has been through ad hoc measures. 

The main purpose of this paper is to provide rigor for the connection between 3D 

correlation functions and rate exchange.  To accomplish this task, a model is developed 

that is both general enough to approximate many real systems, but is also simple enough 
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to calculate multidimensional correlation functions.  This “slow heterogeneity” model 

contains both homogeneous and heterogeneous contributions to rate dispersion.  It also 

includes exchange between rate subensembles, but the exchange is slow relative to the 

decay of the observable.  Two variations of this model are possible, one where the 

observable jumps random distances within its distribution and one where only small steps 

are made.  Within this model, well-defined measures of the dynamics of the hidden 

coordinate governing rate exchange can be extracted from 3D correlation functions.   

 In addition to this intended result, we also come to two unanticipated conclusions. 

First, the 3D correlation function contains two contributions, one that reports on the 

dynamics of the exchange process and another that does not.  A similar thing happens in 

multidimensional spectroscopy: a single measurement is a sum of different “pathways,” 

different terms representing different dynamical behavior.68  The weighting of these terms 

is not universal; it depends on the shape of the distribution of the observable.  Extracting 

an uncontaminated measurement of the exchange kinetics in the face of these issues is a 

challenge.  Some simple approaches are discussed here. More sophisticated ones will be 

presented in the future,69 but they build on the model developed in this paper.  

The second idea that emerges is a new perspective on the role of multidimensional 

correlation functions.  Static (0D) statistics and 1D correlation functions define the 

distribution and kinetics of an observed quantity.  If rate dispersion is found, a hidden 

process is implied.  Two- and three-dimensional correlation functions report on the 

distribution and kinetics of the corresponding hidden coordinate.  If these kinetics are 

dispersed, a second level of hidden dynamics is implied.  Higher dimensional correlation 

functions probe increasingly deep into this hierarchy. 
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3.2 Defining the Slow Heterogeneity Model 

Assume that an observable property X(t) undergoes spontaneous fluctuations at 

equilibrium.  The N-dimensional correlation function 
( )

1( , , )
N

X NC    is defined by 

 
( ) 1 0

1 1 /2
2

( ) ( ) ( )
( , , )

N N
X N N

X t X t X t
C

X

 




                                           (1) 

where the brackets indicate an ensemble average.  The system is ergodic, so either a time 

average over t0 or an average over multiple molecules can be used.7  The observable X(t) 

is defined so its mean is zero, X  = 0.  Absolute times ti and time intervals τi = ti − ti−1 

will be used interchangeably to simplify the notation.  The normalization factor makes the 

1D function one at time zero.  Higher correlation functions have an initial amplitude 

relative to the 1D function. 

In addition to the observable, there is another slow variable θ(t) that cannot be 

measured directly.  At equilibrium, the joint probability of these variables is P(X0, θ0).  The 

time evolution of the system is governed by a stationary Green’s function (conditional 

probability) G(X1, θ1 | X0, θ0; t1 − t0).  The correlation functions can be rewritten with the 

time dependence shifted to this function:  
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   
 


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                   (2) 
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From right to left, the initial, equilibrium distribution P(X0, θ0) is multiplied by X0 to 

measure the observable at t0.  The system is propagated to t1 by the Green’s function and 

the integration over X0 and θ0.  Measurement and propagation are repeated N times.  A final 

measurement comes from multiplying by XN, and the ensemble average is accomplished 

by the integrals over XN and θN. 

From this general expression, the slow heterogeneity model is built from several 

assumptions.  The observable and hidden variable are taken to be uncorrelated at 

equilibrium, 

 
( , ) ( ) ( )XP X P X P 

, (3) 

where PX(X) is the equilibrium distribution of X(t), and Pθ(θ) is the equilibrium distribution 

of θ(t).  From the assumption that X(t) has a mean of zero, we have 

 
( ) 0XdX XP X






. (4) 

The time evolution of the system is assumed to obey 

 

1 1 1 1 1

1 1

( , | , ; ) ( | ; / )

( | ; )

i i i i i X i i i i

i i i

G X X G X X

G

    

  

    

 




. (5) 

The evolution of the observable is given by GX(Xi+1 | Xi; τi+1/θi), and that of the hidden 

coordinate is governed by Gθ(θi+1 | θi; τi+1).  Equation 5 specifies that the evolution of the 

hidden coordinate θ(t) is unaffected by the observable X(t).  The evolution of X(t) is only 

coupled to θ(t) by a uniform expansion or contraction of its decay profile.  All the 

subensembles have the same decay shape; only their mean decay times differ.  In addition, 
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the evolution of θ(t) is slow relative to the equilibration of X(t), so the initial value of θ(t) 

governs the evolution of X(t) over its entire decay.   

The standard measurement of dynamics is the 1D correlation function, 

 

(1) 1
1 2

( ) (0)
( )X

X X
C

X


 

. (6) 

The assumptions made so far reduce Equation 2 to  

 
(1)

1 10
( ) ( / ) ( )XC d g P    


  . (7) 

where  

 1 0 1 1 0 0 0( ) ( | ; ) ( )X Xg x dX dX X G X X x X P X
 

 
   . (8) 

The homogeneous decay g(τ / θ) is the decay of a subensemble of molecules with a fixed 

value of θ(t).  Equation 6 has been widely used to describe how the total observed rate 

dispersion arises from a combination of heterogeneous rate dispersion, which comes from 

the width of Pθ(θ), and homogeneous rate dispersion, which comes from a nonexponential 

g(x).  For our purposes, note that all information on the dynamics of θ(t) is lost.  A static 

heterogeneity and one undergoing slow exchange are indistinguishable.  Information on 

Pθ(θ) survives, but it is impossible to deconvolve from g(x). 

To move to higher correlation functions, additional assumptions will be needed.  

First note that with slow exchange, the following approximation is good:  

 1 1 1 1 1( | ; ) ( / ) ( ) ( / )i i i i i i i i iG g g               
. (9) 
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The observable relaxes completely before θ(t) changes.  We also need more information 

about GX(Xi+1 | Xi; τi+1/θi).  In general, the dynamics of the observable could vary with 

position in the distribution.  Only one type of average over position is given by g(x) 

[Equation 8].  The model is restricted to cases where this average alone is sufficient to 

specify the homogeneous decay of individual subensembles. 

Two cases are consistent with this restriction.  The first, “strong”-relaxation case is 

defined by 

 1 1 1( | ; ) ( ) ( ) 1 ( ) ( )X i i i i X iG X X x g x X X g x P X     
              (10) 

The value of X(t) remains fixed at a single value [the first term in Equation 10] until an 

event scatters it to a random position within the equilibrium distribution [the second term 

in Equation 10].  This model accommodates any distribution for the observable: Gaussian 

or not, symmetric or asymmetric, discrete or continuous.  It includes the important case of 

a two-level system. 

The second case has “weak” relaxation in which the observable only moves by 

small steps.  It is necessary to have a Gaussian distribution of the observable, 

 
2

2

1
( ) exp

2 2
X

X
P X

 

 
  

 
 

. (11) 

It is not necessary that the original experimental quantity be Gaussian.  Any continuous 

distribution can be changed to this shape by a transformation of variables.  The important 

assumption is that after this transformation, it has Gaussian dynamics within each 

subensemble70 
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Note that the ensemble distribution is not Gaussian during relaxation.  These dynamics are 

diffusive and allow for a time dependent diffusion constant.  However, the diffusion 

constant must be uniform across the distribution.  The assumption of a uniform diffusion 

constant differs from the assumption of a uniform residence time, which defines strong 

relaxation.   

The model defined by these assumptions is relatively general. Any distribution of 

θ(t) can be treated.  Both the homogeneous decay g(x) and the exchange process Gθ(θ1 | θ0; 

τ1) may be exponential or not.  This flexibility is balance by simplicity. The model is 

defined by a small number of uncoupled functions: PX(X) and g(x) describe the equilibrium 

and time-dependent properties of the observable; Pθ(θ) and Gθ(θ1 | θ0; τ1) do the same for 

the hidden variable.  This balance is a good match for many experimental systems, for 

example, supercooled liquids and polymers.4-7,58-60 

If g(x) is non-exponential, in other words, if there is homogeneous rate dispersion, 

it must be caused by a different hidden variable φ(t).  An average over the dynamics of φ(t) 

is implicit in g(x) [Equation (8)].  The variable that we are concerned with θ(t) is 

distinguished from φ(t) by its lack of correlation with the observable: θ(t) is uncorrelated 

from X(t) at equilibrium [Equation (3)], and because Gθ(θ1|θ0; τ1) is independent of X(t), 

correlations do not build with time.  The same is not true of φ(t).  This point will be 

elaborated in the future.  Here we simply point out that our conclusions only pertain to a 

hidden coordinate associated with rate heterogeneity. 
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3.3 Strong Relaxation Model 

The weak relaxation model will be considered in Section 3.6 We first look at 

multidimensional correlation functions for the strong relaxation model, which has simpler 

results. Using Equations 2 and 5 along with Equation 10, calculations are straightforward 

for correlation functions with successively higher dimensions.  Because Equation 10 

contains two terms in the time evolution, the number of terms doubles with each additional 

dimension.  Fortunately, many terms are eliminated by Equation 4.  Initially, each term 

also contains N + 1 integrals over θi’s.   The assumption of slow exchange [Equation 9] 

reduces the number greatly. 

The 2D correlation function, 
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2 1 3/2

2

( ) ( ) (0)
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X X X
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X

  
 




, (13) 

becomes 

 

(2)

2 1 1 2 10
( , ) ( / ) ( / ) ( )XC d g g P        


 

. (14) 

The amplitude of the correlation function is determined by the distribution of the 

observable through the parameter β1, 

 

3

1 3/2
2

X

X

 

, (15) 

the skewness of the distribution.71  The distribution of the observable is irrelevant to the 

1D correlation function.  Equation 14 is the first example of the distribution playing a role 

in a higher correlation function.  For 2D, the most important effect is that the amplitude is 
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zero for a symmetric distribution.  (Section 3.7 will give a work-around for such systems.)  

Although the same functions appear in the 1D expression [Equation 7], the integral in 

Equation 14 can be uniquely decomposed into g(x) and Pθ(θ).  This result has been worked 

out in the context of 2D response functions.34  However, the same integral appears for 

response functions and correlation functions, so there is no need to repeat the reasoning 

here.  The important point is that the 2D correlation function yields the distribution of the 

hidden variable Pθ(θ), but no information on its dynamics. 

The focus of this paper is the 3D correlation function, 

(3) 3 2 1 2 1 1
3 2 1 2

2

( ) ( ) ( ) (0)
( , , )X

X X X X
C

X

     
  
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

. (16) 

For the first time, multiple terms survive:   

 
(3) (3) (3)

3 2 1 2 1 3 2 1 ex 3 2 1( , , ) 1 ( , , ) ( , , )X fC C C           
. (17) 

We denote the terms 
(3)

1 3 2 1( , , )fC     (filter 1) and 
(3)

ex 3 2 1( , , )C     (exchange) for reasons 

that will become clear.  Each is normalized to one at the overall time origin.  Their relative 

contributions depend on the shape of PX(X) through β2, the ratio of fourth to second 

moments, 

 

4

2 2
2

X

X

  , (1) 

the kurtosis of the distribution.71  The problem simplifies to a single term only if β2 = 1, for 

example, a two-level system with equal populations.  Any other distribution combines the 
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two terms with a distribution-specific weighting.  For example, a Gaussian has β2 = 3, and 

both terms are significant: 
(3) (3) (3)

1 ex2 fC C C  .   

The relative weighting is important, because each term has a different behavior 

during τ2.  The filter 1 term,  

(3)

1 3 2 1 3 2 10
( , , ) ( / ) ( / ) ( / ) ( )fC d g g g P          


 

, (19) 

follows the pattern of the 1D and 2D correlation functions [Equations 7 and 13].  Its 

behavior can be understood by writing it as 

(3) (1)

1 3 1 2 2 3 1 1 20
( , ; ) ( ) ( / ) ( / ) ( ; )f fC C d g g P          


 

 (20) 

This term now appears to be a pseudo-2D correlation function at each value of τ2 [compare 

to Equation 14].  The difference from the true 2D function is that the true distribution P(θ) 

has been replaced with a modified, pseudo-probability distribution Pf1(θ; τ2),  
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1 2 (1)
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g P
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 




. (21) 

This distribution is normalized for all τ2. The contribution of the faster subensembles (those 

with smaller θ’s) is reduced by the factor of g(τ2 / θ); they have been “filtered” out of the 

distribution.   Significantly, Gθ(θ3 | θ1; τ2) does not appear in Equation 20.  This term has 

no information about rate exchange. 

In contrast, the second term in Equation 17has a decay during τ2 that is solely due 

to rate exchange: 
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The first problem is how to isolate information about Gθ(θ3 | θ1; τ2) from this term.  The 

second is how to isolate the exchange term’s contribution to the total, measured C(3)(τ3, τ2, 

τ1).  

3.4 Extracting a Correlation Function of the Hidden Variable 

Information about Gθ(θ3 | θ1; τ2) will come most easily in the form of 
(1)

( )C 
, a 

1D correlation function of the hidden variable, 
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with δθ(τ) = θ(τ) − θ  [compare to Equation 6].  This expression can also be written in 

terms of the Green’s function of the hidden variable: 
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It will be convenient to define a functional Q31[ f ](τ2)  that integrates over τ3 and τ1,  
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If 
(3)

ex 3 2 1( , , )C     is integrated, the correlation decay of θ(t) emerges:58-62 
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In a future paper, we will argue that a different measure has advantages,69 but Equation 26 

makes the main point.  Extracting a well-defined measure of the kinetics of the hidden 

variable from the exchange term is straightforward. 

Unfortunately, integrating the measured 3D correlation function gives a more complex 

expression, 
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The integral in this expression does not simplify in general.  For a specific system, full 

analysis of the 2D correlation function should yield both g(x) and Pθ(θ).  With these 

functions, Pf1(θ; τ2) and its integral can be calculated, and the exchange-correlation function 

can be extracted.  Another approach is to note that the last term in Equation 27 decays with

(1)

2( )XC  .  If T , the decay time of the observable, is sufficiently well separated from the 

exchange time Tex, one can simply ignore the early data to obtain the exchange kinetics: 
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. (28) 

Thus, the primary claim of the paper is established.  The 1D dynamics of the hidden 

coordinate θ(t) can be obtained from the 3D dynamics of the observable X(t).  One can 

recover not just the mean exchange time, but the full shape of the exchange process, 

including any dispersion in the exchange rate.   
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3.5 3D Rate-Correlation Spectra 

Although the last section showed that the kinetics of rate exchange can be measured 

in principle, the approaches to correcting for the filter term are demanding in practice.  This 

section looks at the problem from the perspective of time-dependent (3D) rate-correlation 

spectra.  These spectra are an extension of 2D (static) rate-correlation spectra34,72 and 

mimic the time-dependent frequency-correlation spectra used in 3D coherence 

spectroscopy.73,74  Time-dependent rate-correlation spectra are an intuitive way to present 

multidimensional kinetics and have appeared in recent publications.25,62  They will suggest 

ways to improve the analysis of multidimensional kinetics. 

The 3D rate-correlation spectrum 
(3)

3 2 1
ˆ ( , , )XC y y  is defined implicitly by  
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with 

 
10log i

i

T
y

T


. (30)  

It involves a 2D inverse-Laplace transform from time intervals τi to time constants (inverse 

rates) Ti, along with a shift to a logarithmic scale yi.  The origin of this scale is set to T , a 

time characteristic of the relaxation of X(t). 

To illustrate the behavior of this spectrum, we set up a simple example.  The 

observable is distributed as a Gaussian (β1 = 0, β2 = 3) and has a biexponential 

homogeneous decay,  
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with rates differing by a factor of four.  In addition, it has five subensembles with rates also 

separated by factors of four, 
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The exchange time Tex is taken to be the half-life of 
(1)

2( )C  , which is much longer than 

T .  For reference, the homogeneous decay and the full 1D correlation function are 

compared to a single exponential in Figure 3.1.  The increased spread of g(τ/T ) (red) 

relative to the exponential (black) represents homogeneous rate dispersion.  The even larger 

spread of 
(1)

1( )XC   (blue) includes the additional effects of heterogeneous rate dispersion. 

Rate-correlation spectra for this system are shown in Figure 3.2.  (The exact results 

are a set of delta functions.  They have been interpolated with a smooth surface to make 

contour plots.)  The individual contributions, 
(3)

ex 3 2 1
ˆ ( , , )C y y  and 

(3)

1 3 2 1
ˆ ( , , )fC y y , are 

shown in the top and middle rows, respectively.  The measured result 
(3)

3 2 1
ˆ ( , , )XC y y  is 

the weighted sum of these two [Equations 17] and is shown in the bottom row.   

In the left-hand column, τ2 = 0, and no exchange or filtering has occurred.  The two 

components (and thus the total) have identical shapes.  These spectra are equivalent to a 

2D measurement (see Section 3.7).  The width along the anti-diagonal (y1 = −y3) is only 

due to homogeneous dispersion, whereas the width along the diagonal (y1 = y3) includes 

the heterogeneous dispersion.  Thus, the elongation of the peak indicates the fraction of the 

dispersion due to heterogeneity.   
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In the next two columns (τ2 = T  and 4T ), τ2 passes through the decay of the 

observable.  Because exchange is slow on this scale, 
(3)

ex 3 2 1
ˆ ( , , )C y y  does not change.  

Over the same period, 
(3)

1 3 2 1
ˆ ( , , )fC y y  decreases in amplitude, shifts toward longer time 

constants, and becomes less elongated.  All three effects can be interpreted as filtering of 

the heterogeneous distribution.  As fast subensembles are removed, the size of the 

correlation function drops, the average shifts toward slower times, and the remaining 

distribution narrows.  The observed spectra (bottom row) combine the unchanging 

exchange term and the shifting filtered term.  The overall volume drops.  The peak moves 

and the diagonal width varies, both non-monotonically.  None of these changes are related 

to exchange kinetics. 

In the last two columns of Figure 3.2 (τ2 = Tex and ∞), the decay of the observable 

is complete, and 
(3)

1 3 2 1
ˆ ( , , )fC y y  no longer contributes.  As rate exchange proceeds, 

(3)

ex 3 2 1
ˆ ( , , )C y y  changes.  Its peak drops, it broadens along the anti-diagonal, and it 

contracts along the diagonal.  The elongation characteristic of heterogeneity is lost.  Rate 

exchange causes the system to appear homogeneous, even though heterogeneity exists. 

This example gives a visual sense of the important contributions of the filtering 

term to the 3D correlation function.  The method used to quantify the spectrum; volume, 

height, widths of cuts or projections, and so on; will determine whether this term 

contaminates an attempt to measure the exchange dynamics.  When the time scales of 

observable relaxation and exchange are unambiguously different, it is enough to separate 

the early and late dynamics.  When these time scales are less distinct, intermingling of these 

effects is possible. 
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All of these effects were seen in our recent study of solvation in an ionic liquid.25  

The peak due to diffusive solvation shifted to longer times, narrowed along the diagonal 

and broadened along the antidiagonal.  In that system, the exchange dynamics overlap 

strongly with the diffusive solvation times.  The measure used for the exchange dynamics 

would be sensitive to changes in width along the diagonal, and the filtering term may have 

contributed to the reported results.  However, the effects are unlikely to be large enough to 

change the main conclusion that exchange occurs on a timescale similar to the diffusive 

solvation in that system. 

The example in Figure 3.2 suggests that methods are possible that would be 

insensitive to the filter term.  The exchange term 
(3)

ex 3 2 1
ˆ ( , , )C y y  increases its width along 

the antidiagonal axis, whereas the filtering term 
(3)

3 2 1
ˆ ( , , )fC y y  shifts and narrows only 

along the diagonal axis.  A forthcoming series of papers will show that these effects are 

general and will develop methods for analyzing multidimensional data that discriminate 

between exchange and filter effects in 3D data.69 

3.6 Weak Relaxation Model 

The results from the weak relaxation model are similar to those with strong 

relaxation in many ways.  Combining Equations 2–5 along with Equation 12 again allows 

straightforward calculations in which the number of terms increases with the number of 

dimensions.  For the 2D correlation function, all the terms are zero, because the distribution 

is symmetric.  (See Section 3.7 for further discussion of this problem.)   

To present the 3D results, a modified filter term 
(3)

2 3 2 1( , , )fC    , is needed,   
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(3) (1)

2 3 1 2 2 3 1 2 20
( , ; ) ( ) ( / ) ( / ) ( ; )f fC C d g g P          


 

. (33) 

with 

 

2

2
2 2 (1)

2

( / ) ( )
( ; )

( )
f

g P
P

C

  
 




 (34) 

[compare to Equations 20 and 21].  The 3D correlation function becomes 

 
(3) (3) (3)

3 2 1 2 2 3 2 1 ex 3 2 1( , , ) 1 ( , , ) ( , , )X fC C C           
. (35) 

The fact that β2 = 3 for this model has been used to make the correspondence to the 

strong relaxation result [Equation 17] clear.  Other than the extra factor of g(τ2/θ) in the 

filter 2 term [Equation 34], the two models are identical.  Unlike Pf1(θ; τ2), the 

normalization of Pf 2(θ; τ2) changes with τ2, but the effect on the observed correlation 

function is small.  

  Most important, the exchange-correlation function is unchanged and yields the 

correlation function of θ(t) by the methods described earlier. The filter 2 term 

(3)

2 3 2 1( , , )fC     can be explicitly modeled and subtracted, just as 
(3)

1 3 2 1( , , )fC     can.  The 

filter 2 term decays in τ2 on timescales that are similar to 
(1)

2( )XC  , so Equation 28 can be 

used for weak relaxation.  Future work will show that 
(3)

2 3 2 1( , , )fC     has the same 

distinctive behavior that was seen in Figure 3.2 and that this behavior allows it to be 

excluded from a measurement of the exchange dynamics.69 
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3.7 Relationships between Correlation Functions 

From their definitions alone [Equations 6, 13, and 16], it is not clear how 1D, 2D 

and 3D correlation functions are related.  In the slow heterogeneity model, they are very 

simply connected.  For either strong- or weak-relaxation cases, the 1D correlation is 

equivalent to cuts through the 3D correlation,  

 
(3) (1) (3)

1 2 1 1( ,0,0) ( ) (0,0, )X X XC C C     . (36) 

If the 2D correlation exists (β1 ≠ 0), the τ2 = 0 slice of the 3D correlation is equal to the 2D 

correlation, 

 
(3) (2)

1 3 1 2 3 1( ,0, ) ( , )X XC C     
, (37) 

and the τ1 = 0 or τ3 = 0 slices of the 2D correlation are the same as the 1D correlation, 

 
(2) (1) (2)

1 1 1 1( ,0) ( ) (0, )X X XC C C     . (38) 

For observables with symmetric distributions, the standard 2D correlation function 

(2)

3 1( , )XC    is unmeasurable.  Equation 37 suggests that an alternative 2D correlation 

function 
(2 )

3 1( , )XC  


 should be defined as the τ2 = 0 slice of the 3D correlation function,  

 
(2 ) (3)

3 1 3 1( , ) ( ,0, )X XC C   



, (39) 

or 

 

2

3 1 1(2 )

3 1 2
2

( ) ( ) (0)
( , )X

X X X
C

X

  
 






. (40) 
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Compared to 
(2)

3 1( , )XC   , only its amplitude is different; its dynamics are identical, 

 

(2 )

2 1 2 2 10
( , ) ( / ) ( / ) ( )XC d g g P        


 

 (41) 

[compare to Equation 14].  Equation 38 extends to the alternative correlation function, 

 
(2 ) (1) (2 )

1 2 1 1( ,0) ( ) (0, )X X XC C C   
 

 
. (42) 

Thus, within the slow heterogeneity model, higher dimensionality correlation 

functions contain all the information in the lower ones.  This property can be ascribed to 

the assumption that the dynamics are uniform across the distribution of the observable, 

either a uniform persistence time for strong relaxation or a uniform diffusion constant for 

weak relaxation.  The model and this assumption can be tested by measuring different 

correlation functions and checking the validity of the relationships in this section. 

One important cut of the 3D correlation function has not been discussed, and its 

form depends on whether the observable relaxation is strong or weak.  In the strong 

relaxation model, the τ1 = τ3 = 0 cut is equal to the 1D correlation, 

 

(3) (1)
2 2 1 2 2

0
(0, ,0) ( / ) ( ) ( )X XC d g P C       


  . (43) 

For the weak relaxation model, an extra factor of g(τ2/θ) enters: 

 

(3) 2
2 2 2

0
(0, ,0) ( / ) ( )XC d g P     


  . (44) 

In the case of an exponential homogeneous decay and no heterogeneity, the decay 

times of these two cases differ by a factor of two.  Thus, in many systems, this cut will be 

able to distinguish between strong and weak relaxation.  
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3.8 Response Functions Versus Correlation Functions 

This paper has dealt solely with correlation functions calculated from the 

fluctuations of a system at equilibrium.  For 1D kinetics, this correlation function is 

equivalent to the response function found by perturbing a system away from equilibrium 

and watching its return.75  Kryvohuz and Mukamel have shown that for higher dimensions, 

the relationship between response functions and correlation functions becomes complex 

for a general dynamical system.50,51  Nonetheless, the expression derived here for the 2D 

correlation function [Equation 14] has dynamics identical to those derived for a 2D 

response function within the same assumptions. 34,35  This simple relationship is an 

important result for the slow heterogeneity model. 

Does the same simplicity extend to 3D?  For a single observable system, it cannot.  

If an observable is perturbed and then returns to equilibrium, there is no place to store the 

information needed to measure a slow exchange time.  However, it has been shown that in 

a two-observable system (molecular electronic state and orientation), a 3D response 

function can be measured that uses the slow observable to store rate information about the 

fast observable.76  Response functions nearly identical to the correlation functions derived 

here are found, including the presence of two distinct terms.  The question of which systems 

have simplified relationships between correlation and response functions occur merits 

further investigation. 

3.9 Summary and Conclusions 

Three-dimensional correlation functions are emerging as a systematic way to 

characterize rate exchange, both its mean time and its decay shape.  This paper has 

introduced a simple and general model of rate heterogeneity that provides a quantitative 
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connection between the 3D correlation function and the correlation function of the variable 

associated with rate exchange.  Systems that violate the restrictions of this model, for 

example with faster exchange25 or kinetics that vary across the distribution,51,52 may well 

be important.  Nonetheless, the slow heterogeneity model developed here is a limiting case 

of this more complex behavior and will serve as a platform for building more elaborate 

models. 

In the process of analyzing this model, we discovered that high dimensional 

correlation functions of incoherent kinetics are sums over multiple dynamical pathways.   

Within a pathway a specific dynamical process governs each time interval.  Measurements 

cannot be automatically associated with a single processes; the contributions of the 

contributing pathways must be disentangled.  The same situation exists in coherence 

spectroscopy68 and in incoherent response functions.76,77  In those areas, pathways can be 

associated with diagrams through the eigenstates of the system.  A similar diagrammatic 

approach to incoherent, multidimensional correlation functions may be possible. 

Extracting information on rate exchange from 3D correlation functions without 

contamination from a second, rate filtering pathway is a challenge.  The methods suggested 

here are straightforward and demonstrate the feasibility of such separation.  However, in a 

future series of papers, we will show that more sophisticated methods based on spectral 

transforms of the data provide a cleaner and more robust separation.69 

Once these complications are taken into account, a 3D correlation function yields 

the full kinetics of rate exchange.  The 2D correlation function provides the distribution of 

rates.34  The 2D and 3D correlation functions characterize the hidden rate-exchange 

variable in the same way that the 0D statistics and 1D correlation function characterize the 
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observable.   If the rate-exchange decay is non-exponential, and therefore non-Markovian, 

a second-level, even slower hidden coordinate is involved.  Four- and five-dimensional 

correlation functions will characterize it, and so on through a potential hierarchy of 

processes.  Ergodic systems have a maximum relaxation time scale, so this hierarchy will 

terminate when it reaches a Markovian variable with that time scale.   

This scheme does not provide the specific physical mechanism that generates the 

hidden variable.  Rather, it reduces a set of data to a set of statistical properties of that 

process.  These properties provide the essential experimental constraints on specific 

physical models.  Obtaining data to adequately characterize a deep hierarchy may be 

challenging, but the requirements are clear. 
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Figure 3.1 The 1D correlation function 
(1)

1( )XC 
 of the system of Figure 3.2 (blue), its 

homogeneous component g(τ/T ) (red), and an exponential (black). 
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Figure 3.2 Time-dependent rate-correlation spectra for the system of Figure 3.1.  Top row: 
(3)

ex 3 2 1
ˆ ( , , )C y y , the component that monitors rate exchange. Middle row: 

(3)

1 3 2 1
ˆ ( , , )fC y y , 

the component in which the heterogeneity is filtered.  Bottom row: The total spectrum 
(3)

3 2 1
ˆ ( , , )XC y y .  Each row is normalized to a peak of one at τ2 = 0.  The dotted contour 

interval is half the solid contour interval.
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CHAPTER 4 

MICELLE HETEROGENEITY FROM THE 2D KINETICS OF SOLUTE 

ROTATION2

                                                 
2 Reproduced with permission from Jason R. Darvin and Mark A. Berg J. Phys. Chem. Lett. 2019, 

10, 6885-6899. Copyright 2019 American Chemical Society 
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4.1 Introduction 

In soft, microstructured materials—micelles, vesicles, gels, star polymers, polymer 

nanoparticles, and so on—there are intertwined questions of where a solute resides and 

what local properties it sees.  The photophysics of a solute that is also a chromophore are 

often used to gain information.78-104  Static (0D) measurements, for example, the 

fluorescence quantum yield or Stokes’ shift, give a spatial average of static properties, such 

as hydrogen-bond availability or polarity.  Time-resolved measurements with one time 

dimension (1D) give rates that characterize dynamic properties.  For example, the 

reorientation or solvation rate characterizes the local viscosity or dielectric-relaxation time, 

but again, only with an average over locations.  In microstructure materials, these 1D 

kinetics often have nonexponential decays.  The implications are clearly important, but the 

cause is often ambiguous.  This chapter shows how 2D kinetics7,12,25,30,35,61,62,105-109 resolve 

this problem.  MUPPETS (multiple population-period transient spectroscopy)—a 2D 

version of ultrafast optical spectroscopy;12,30,35—is applied to micelles to distinguish 

between different pictures of the solute distribution and the local properties of a micelle. 

The rotation time of a dye-molecule solute can be measured by the decay of its optical 

anisotropy.110  It is well established that the rotation time reflects the solvent’s macroscopic 

viscosity.  In simple solvents, the decay is close to a single exponential, yielding a single 

viscosity.  (Deviations are seen, even in pure solvents, when complexity is added, for 

example, slow solvation,111 oligomeric solvents,11,12,111 or ionic liquids.112) When the same 

experiment is performed in microstructured materials in general, and micelles in particular, 

the anisotropy decays become nonexponential and appears to have multiple rates.93-104  

(Whether this rate dispersion should be described as a multiexponential (discrete rates) or 
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as a stretched exponential or other continuous rate distribution is not experimentally 

decidable, but depends on the model used to describe it.  We use a nonparametric approach 

that does not distinguish between these cases.108)  

A simple explanation for the observed rate dispersion is that it reflects rate 

heterogeneity.86,91,92,100  Solute molecules occupy a variety of positions within the micelle, 

and these positions have different local viscosities.  Each solute has a specific 

microviscosity, a well-defined rotation time, and an exponential anisotropy decay, but 1D 

kinetics only see the average over the distribution of microviscosities.  In this model, the 

distribution of observed rates can be directly converted into a distribution of viscosities. 

A contrasting, but widely accepted,93-99,101-104 explanation is the “wobble-in-a-

cone” model.113-115  This model is homogeneous.  It assumes that every micelle has the 

average structure, which is strongly layered into a hydrocarbon core, a surface layer of 

partially hydrated head groups, and the aqueous solvent.  It further assumes that the probe 

is confined to the surface layer, and this layer is strongly anisotropic.  As a result, the solute 

can only “wobble” over a restricted cone of angles about the local director.  Other angles 

are explored more slowly by diffusion to a different point on the surface.  In its simplest 

form, this model predicts a biexponential decay: the fast time gives the viscosity of the 

surface layer, the slow time gives the layer’s diffusion constant, and the relative amplitude 

is related to the cone angle.  Every molecule experiences both fast and slow processes in 

sequence, and the rates seen on one molecule are also seen on every other molecule.  Using 

1D kinetics alone, it is difficult, if not impossible, to distinguish between the wobble-in-a-

cone and heterogeneity models.  
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4.2 1D Kinetics of SDS Micelles  

The 1D kinetics of pyrromethene 597 (PM597)116-118 in sodium-dodecyl-sulfate 

(SDS) micelles119-124 are shown in Figure 4.1.  The absorption change with parallel 

( )A   and perpendicular ( )A   polarizations are converted to the electronic, 
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and rotational, 
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decays (Figure 4.1a).110  [See Appendix A for experimental methods.]  The 

electronic decay is similar to the electronic lifetimes reported for PM597 in other 

solvents.116 The rotational decay is also similar to those for other dye molecules in a variety 

of micelles.93-104  It is clearly stretched relative to a single exponential.  For reference, a 

stretched-exponential fit (exp[(−τ/T0)
β
], not shown) gives β = 0.66. 

.Because different models imply different fitting functions, we analyze the data 

with a nonparametric approach, that is, one that does not require a specific form for the 

fitting function.108  The data is smoothed (Appendix A) so its derivative can be taken to 

give the “decay spectrum” (Figure 4.1b), 

 

(1)
(1) r
r

( )ˆ (ln )
ln

T

C
C T








 
  

 
   (47) 



www.manaraa.com

64 

The first moment of this spectrum gives the geometric-mean rotation time, rT  = 230 

ps.  The second central moment (variance) is the total rate dispersion drot = 3.22, 

substantially higher than for a single exponential decay (dexp = 1.645). 

This decay spectrum contrasts with the more common rate spectrum 
(1)

r (ln )C T , 

 

(1) (1) /

r r( ) (ln )e (ln )
T

C C T d T



 


 

 (48) 

which is an inverse-Laplace transform on a log scale.  It expresses the rotational 

decay as a superposition of exponential decays with time constants T.  The advantage of 

the decay spectrum is that it can be derived uniquely from the data, whereas finding the 

rate spectrum is well-known to be an ill-posed problem without a unique solution.125  The 

precise relationship between the decay and rate spectra is 

 
(1) (1) (1)

exp
ˆ ˆ*C C C   (49) 

where the star indicates convolution on the ln-T scale.  Thus, the measurement of the rate 

spectrum is obscured by a “response function” 

(1)
exp

ˆ (ln )C T
, which is the decay spectrum of 

an exponential decay (green curve in Figure 4.1b).  It is a precisely known function, but it 

obscures the details of the rate spectrum nonetheless.  Equation 49 shows that the lack of 

uniqueness in the rate spectrum is the same as the ambiguity in deconvolution.  Because 

variances add under convolution, we can quantify the degree of stretching by the excess 

rate dispersion dexc,  the difference between the variance of the experimental spectrum drot 

and the variance of the response function dexp, dexc = drot – dexp = 1.58.  Broad features, such 
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as these variances, can be recovered despite the convolution, even though fine features 

cannot. 

A general way to model the dispersion in the rotational decay is to start with a 

homogenous decay shape 
(1)

hom ( / )C T , which is shared by all molecules.  For example, it 

could be the biexponential decay predicted by the wobble-in-a-cone model.  It has an 

excess dispersion dhom or a total dispersion dhom + dexp.  In addition, each molecule may 

have its own time constant T, which is distributed with a probability Phet(T).  Combining 

this heterogeneous source of rate dispersion with the homogeneous decay give the total 

decay, 

 

(1)

rot hom het0
( ) ( / ) ( )C C T P T dT 


 

 (50) 

This model assumes that the local time constant does not change during the decay; 

it is in the slow rate-exchange limit.   

With this model, 

 
(1)

r hom het
ˆ ˆC C P 

 (51) 

and  

 rot hom exp hetd d d d  
 (52) 

where dhet is the variance of Phet(T) on a ln-T scale.  One-dimensional methods can measure 

the excess rate dispersion, dexc = drot – dexp = dhom + dhet, but they provide no means to 

separate this sum into its components.   
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4.3 2D Kinetics of SDS Micelles 

Two-dimensional kinetics7,12,25,30,35,61,62,105-109 are sensitive to the difference 

between homogeneous and heterogeneous rate dispersion.35  In these experiments, there 

are two excitations of the sample separated by a time interval τ1.  A measurement of the 

state of the system and its return to equilibrium occurs after a second period τ2, measured 

from the second excitation.  If the response of the system is nonlinear, this signal differs 

from the sum of the signals from each excitation individually.  This difference is the 2D 

decay C(2)(τ2, τ1).  

MUPPETS is a version of 2D kinetics based on ultrafast optical excitation of 

electronic states.35  Each excitation is a pair of simultaneous laser pulses crossed at the 

sample to produce a spatial grating of excited states.  The final measurement is by 

heterodyned diffraction from the mixed grating created by the nonlinear interaction of both 

excitations.  This configuration requires a six-pulse sequence, but results in single-shot 

cancellation of the 1D signals from each excitation acting individually.  The optical system 

used to generate this pulse sequence is described in the Appendix A. 

When using polarized pulses, there are four unique correlation functions differing 

by the type of dynamics measured in each time interval: rotation–rotation, electronic–

electronic, symmetric rotation–electronic, and asymmetric rotation–electronic.  The first 

two can be isolated with measurements at only two polarization combinations: ΔA+ +(τ2, τ1) 

and ΔA− +(τ2, τ1) (see Figure A.4a in Appendix A).12  These can be added to give the 

electronic–electronic correlation, 
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or subtracted to give the rotation–rotation correlation, 
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The resulting electronic–electronic surface is shown in Figure 4.2a as a set of slices 

at fixed τ1.  The 1D decay (Figure 4.1a) is nearly single exponential.  There is an additional 

small component that is attributed to electronic-state solvation, which causes a spectral 

shift and a slight drop in cross section at early times.  Thus, no heterogeneity is expected.  

The solid curves are predicted from the 1D electronic decay, making this assumption. The 

data in Figure 4.2a do not deviate from the predictions in a systematic way as τ1 increases.  

This result indicates that there is no heterogeneity in the electronic-state relaxation.  

Attention can focus on the more interesting rotational dynamics. 

The rotation–rotation results are shown in Figure 4.2b.   Careful examination shows 

that these shapes do change systematically as τ1 increases; small τ1 curves begin decaying 

earlier than curves with a large τ1.  This result indicates that rate heterogeneity is important 

in the rotational dynamics. For a more quantitative interpretation, the data are smoothed 

and converted to a 2D decay spectrum (Appendix A).  The smoothing surface is shown as 

the curves in Figure 4.2b; the corresponding spectrum is shown in Figure 4.3b. 

A 2D decay spectrum indicates the degree of correlation between the time constant 

T1 that a molecule has during τ1 and the time constant T2 that it has during τ2.  For 

heterogeneous rate dispersion, each time constant has a distribution throughout the sample; 
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for a specific molecule, there is only one time constant, which is the same in both time 

intervals.  If we could measure the 2D rate spectrum, it would be spread along the diagonal 

with all the rates of the 1D spectrum, but it would be a delta function along the antidiagonal.  

However, we can only directly measure the 2D decay spectrum, which is a convolution of 

the rate spectrum with the spectrum of an exponential (similar to equation 49).  Figure 4.3a 

shows the decay spectrum calculated from the 1D data, assuming only heterogeneous rate 

dispersion and including this convolution.  Despite the convolution, the elongation along 

the diagonal is clear. 

On the other hand, if the rate dispersion is homogeneous, the various rates seen in 

the 1D data represent sequential steps in a relaxation process that is experienced by every 

molecule.  Even a single molecule will experience all time constants during two separate 

relaxation events, one during τ1 and one during τ2.  In a 2D rate spectrum, there would be 

off-diagonal “cross peaks” at every combination of time constants.  Figure 4.3c shows the  

decay spectrum calculated from the 1D data, assuming only homogeneous rate dispersion 

and including the convolution with the response function.  The spectrum is compact with 

similar widths along the diagonal and the antidiagonal. 

The measured 2D decay spectrum (Figure 4.3b) is strongly elongated, indicating 

that rate heterogeneity is the primary source of rate dispersion.  The same qualitative 

conclusion can be taken from the time-domain data (Figure 4.2b), but the 2D spectrum 

makes it more visually evident. 

The 2D spectrum is also easy to quantify.  In principle, both local anisotropy and 

local viscosity variation, that is both homogeneous and heterogeneous mechanisms, may 

be acting simultaneously.  Thus, the quantitative question is what fraction of the rate 
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dispersion is due to rate heterogeneity.  Within the slow rate-exchange model (Equation 

50) the 2D spectrum can be further reduced to two, 1D projections.108  The integrations 

involved result in additional averaging of the experimental noise. 

If the 2D spectrum is projected along the vertical (or horizontal) axis, it should give 

the 1D spectrum.  This projection from the 2D spectrum (Figure 4.3b) is compared to the 

result from the 1D data in Figure 4.1b.  They are in good agreement.  (The vertical 

projections of the heterogeneous and homogeneous models in Figures 4.3a and 4.3c agree 

perfectly with the 1D data, by construction.) 

The new information in the 2D spectrum comes from the other projection, which is 

taken along the diagonal (Figure 4.3d).  It has a variance of ddia = dhom + dexp; the 

heterogeneous contribution in equation 52 is absent.108  For comparison, the projections of 

the homogeneous and heterogeneous models (Figures 4.3a and 4.3c) are also shown.  The 

data are close to the heterogeneous limit, but there is a slight broadening due to some degree 

of homogeneous rate dispersion.  The effect is small, but eliminating it results in a clear 

increase in the chi-squared of the fit to the time-domain data (Appendix A). 

The variances of these two projections can be combined to give the fraction of the 

excess rate dispersion that is due to rate heterogeneity, 
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When the projections are reduced to their two variances, there is even more 

averaging of experimental noise.  This single number is a reduction or “averaging” of all 

the data in Figure 4.2. Thus, it is more reliable than one might anticipate.  It also does not 

rely on assumptions about the specific mechanism responsible for either the homogeneous 
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or heterogeneous rate dispersion or using specific functions to represent Chom(τ/T) or 

Phet(T).  It only assumes the general form of equation 50. 

4.4 Viscosity Inside Micelles 

Although the 1D data cannot be uniquely decomposed into homogenous and 

heterogeneous contributions, the loss of information in equation 50 is not complete.  The 

loss primarily affects the high moments of Chom(τ/T) or Phet(T).  An example of a 

decomposition with the correct low moments can be created using the 2D results and mild 

assumptions.  We assign a biexponential to Chom(τ/T) and a beta distribution to Phet(T).  

The biexponential is the simplest form from the wobble-in-a-cone model for local 

anisotropy.  The beta distribution is a smooth, single peaked function with four adjustable 

parameters.126  With these forms, the Appendix A shows that the first four moments of the 

1D decay spectrum and the value of fhet from the 2D measurements can be correctly 

reproduced.  The resulting inversion of equation 50 correctly represents the major features 

of Chom(τ/T) and Phet(T), even though the details are not unique. 

Figure 4.3d compares Chom(τ/T) to a single exponential.  This comparison correctly 

illustrates the magnitude of the homogeneous rate dispersion, which in turn, reflects the 

amount of anisotropy in the solute’s local environment.  It is quite small, near the limits of 

experimental detectability.   

Figure 4.4 shows the distribution of microviscosities implied by the measurements.  

The rotation time of PM597 in several pure solvents was measured to establish the 

relationship between rotation time and viscosity (Appendix A).  This figure must be 

interpreted with the understanding that finer features may be distorted in the deconvolution.  
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For example, the low viscosity tail may decay too slowly or the high viscosity cut-off may 

be too sharp.  However, the mean position, width and skewness of the distribution are well 

represented.  Thus, microviscosities are significantly populated from levels near, or even 

below, those of the external water (1 cP) to ones ~30-fold higher.  The high viscosity is not 

simply characteristic of long hydrocarbon chains: the viscosity of dodecane is only 1.3 cP.  

Rather it is caused by constraints on the motion imposed by the micelle structure.  A  

similarly high viscosity is found in dodecanol (16.1 cP), where motion is constrained by 

the need to maintain hydrogen bonding between the sparse hydroxyl groups.  The skew is 

strong, with the peak probability near the maximum microviscosity and a steadily 

decreasing probability for lower microviscosities.  This shape has implications for a 

structural interpretation. 

4.5 Conclusions 

Many discussions of micelles are based on their average structure.  This structure 

can be seen in measurements that average over many molecules, such as light,123 x-ray121 

or neutron120,122 scattering.  In a sense, they are mean-field discussions.  The wobble-in-a-

cone model adds the idea that a solute is tightly confined to a single portion of this structure, 

resulting in homogenous behavior.   

To create the observed heterogeneity, we could keep the mean-field picture of the 

micelle, but add a strong radial gradient in microviscosity and assume that take the solutes 

distribute throughout the micelle.  However, the highest viscosity would be in the center, 

which occupies a small volume.  The intermediate region has a larger volume and, as a 

result, most solutes would be in a region of intermediate microviscosity.  The strong skew 

in Figure 4.4 is hard to explain. 
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On the other hand, we can drop the mean-field picture.  Micelles are held together 

by weak forces, allowing large fluctuations in their instantaneous structure.  Heterogeneity 

arises not just from the variety of conditions within one micelle, but also from the diversity 

of structures from micelle to micelle.  Most structures have a substantial region from which 

water is excluded and where the solute is most soluble.  The need to exclude water 

constrains motion, creating a high viscosity.  In the interfacial region, the water, head 

groups, and hydrocarbon mix in ways that are much more diverse, with more water 

exposure leading to sites that are more mobile, but also less favorable to the solute.  This 

picture can account for the broad and highly skewed distribution of microviscosities, if the 

range of instantaneous configurations persist over the nanosecond duration of the 

measurement.   

The same issues are relevant to other microstructured materials and other processes.  

These materials are all susceptible to large fluctuations in structure that can persist over 

times longer than important chemical events.  The average structure seen in many 

experiments only becomes relevant on longer timescales.  Two-dimensional kinetics offer 

a direct approach to probing the properties of such fluctuation
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Figure 4.1 The 1D kinetics of PM597 in SDS micelles.  (a) The rotational decay 
(1)
r ( )C   

from pump–probe measurements (blue) and time-correlated single-photon counting (red) 

is shown as a solid curve.  The nonexponential rotational dynamics are characterized by 

the geometric-mean time 
rT  and the rate dispersion drot.  A single exponential with the 

same 
rT  (green) and its own dispersion dexp is shown for comparison.  A smooth fit (black 

dots) is used to produce the spectrum in (b).  The rotation-free electronic decay 
(1)
e ( )C   

(orange) is also shown with its smooth fit (black dots).  (b) Rotational decay spectra from 

1D (black) and 2D (blue) measurements 
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Figure 4.2 The 2D kinetics of PM597 in SDS micelles.  The (a) electronic–electronic 

(2)
ee 2 1( , )C    and (b) rotation–rotation 

(2)
r r 2 1( , )C    surfaces are shown as a series of cuts at 

constant τ1.  The smooth curves in (a) are the predictions from the 1D results, assuming a 

homogeneous electronic decay.  In (b), the curves are a smoothing fit.  They are used to 

produce the decay spectra in Figure 4.3.
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Figure 4.3 Analysis of the rotation–rotation results (Figure 4.2b).  The 2D decay spectra 

(2)
r r 2 1

ˆ ( , )C T T  for (a) 100% heterogeneity and (c) 0% heterogeneity are compared to (b) the 

measured spectrum.  (d) Projections of the decay spectra along the diagonal: 100% 

heterogeneous (a, red), measured (b, black)  and 0% heterogeneous (c, blue).  (e) The decay 

shape for an individual molecule (Chom(τ/T), black) compared to an exponential (green)
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Figure 4.4 The distribution of microviscosities seen by the solute.  The viscosities of 

several pure solvents are marked for reference.
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CHAPTER 5 

ROTATIONAL ANISOTROPY IN IONIC LIQUIDS 

5.1 Introduction 

Room temperature ionic liquids, often referred to simply as ionic liquids, are 

organic salts that exist in the liquid state below 100 °C. There exists many combinations 

of cation-anion pairs available during the synthesis of ionic liquids allowing for tunable 

properties. An example of the molecular structure of an ionic liquid is show in figure 5.1. 

Ionic liquids are of interest to people because almost everything is soluble in them, they 

possess negligible volatility, and they have a high ionic conductivity. These properties 

make them ideal for energy, synthesis, or green chemistry applications.127 Experiments to 

understand the properties of ionic liquids often exhibit rate dispersion128-134; thus, their 

structural, solvation, and reaction dynamics are poorly understood.  

Solvation dynamics study a solvents reorganization around a solute molecule that 

has undergone a change in its charge distribution. In typical solvents, the solvation response 

is biphasic caused by inertial motion of the solvent molecules on the femtosecond scale 

and the diffusion dynamics on the picosecond to nanosecond timescale. It is assumed this 

dispersion is caused by a homogeneous mechanism.135 Maroncelli and coworkers128-134 

studied the solvation response of coumarin 153 in ionic liquids and found that the diffusive 

solvation dynamics are considerably more dispersed than the dynamics seen in common 
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solvents. In an effort to understand the structural properties of ionic liquids, computer 

simulations wereby performed Canongia Lopes and Pádua.136 Their results suggest that 

ionic liquids are composed of nanostructured nonpolar and polar regions. Nonpolar regions 

are comprised of the alkyl chains of the cations. Polar regions are comprised of charged 

portions of the cation and the anion. This study implies structural heterogeneity is 

responsible for rate dispersion seen in ionic liquids. Terranova and Corcelli.137 performed 

molecular dynamics simulations to mimic a solvation response function. The shape of their 

solvation response function matched experimental results; however, they attribute the 

shape of the decay to translational movement of the anion in and out of the first solvation 

shell.  

The results of solvation dynamics experiments in ionic liquids bring up an obvious 

question. Is rate heterogeneity present in the rotational anisotropy of a solute molecule 

within ionic liquids? This chapter aims to answer that question. The anisotropy of 

pyrromethene 597 was measured in a series of 1-alkyl-3-methylimidazolium 

tetrafluoroborate (CnMIM:BF4) ionic liquids mixed with acetonitrile at a constant mole 

fraction and it was measured in 1-dodecyl-3-methylimadazolium tetrafluoroborate 

(C12MIM:BF4) at varying mole fraction. In each set of experiments, non-exponential decay 

was observed, but the magnitude of the dispersion lied within the noise level of the 

MUPPETS experiment.  

5.2 Experimental Details 

Ionic liquids were purchased from io-li-tec at ≥ 98% purity. Ionic liquids were 

stored in a desiccator to eliminate the absorption of water during storage. Pyrromethene 

597 (PM597) was purchased from Exciton. Acetonitrile was obtained from Sigma Aldrich 
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at spectrochemical grade. Ionic liquids and acetonitrile were measured by weight. Mole 

fractions were relative to the ionic liquid. PM597 was added until the optical density was 

0.4. Experiments were performed in a flow cell as a precaution to protect against the 

formation of photoproducts.  

Ultrafast pump probe spectroscopy was used to measure the rotational anisotropy 

of PM597. The ultrafast optical pulses were approximately 300 fs in length and have a 

wavelength of 527 nm. Excitation of the sample was performed with pulse 1c at 500 Hz. 

Measurement of the sample was performed with pulse 3c at 1000 Hz and detected with 

PD1. A second reference pulse, 3a, did not pass through sample and was detected by PD2. 

A variable neutral density filter was place in front of PD2 to ensure equal intensity of PD1 

and PD2 before the experiment was performed. The signal was calculated by PD1-PD2 

with a lock-in amplifier. A fourth pulse, 3b, was placed on PD3 to measure long term 

fluctuations in laser intensity. The final signal was calculated by (PD1-PD2)/PD3. The 

vertical polarization of pulse 3c remained constant. The experiment was performed with 

the polarization of pulse 1c at both vertical and horizontal polarizations (parallel and 

perpendicular).  

5.3 Results and Discussion 

The first set of experiments measured the rotational anisotropy of PM597 in a series 

of ionic liquids at a constant mole fraction. The mole fraction was chosen so that rotation 

of PM597 in each ionic liquid completely decayed within our two-nanosecond time 

window. The ionic liquids studied were 1-ethyl-3-methylimidazolium tetrafluoroborate 

(C2MIM:BF4). 1-butyl-3-methylimidazolium tetrafluoroborate (C4MIM:BF4), 1-octyl-3-

methylimidazolium tetrafluoroborate (C8MIM:BF4), and 1-dodecyl-3-methylimidazolium 



www.manaraa.com

80 

tetrafluoroborate (C12MIM:BF4) at χ = 0.2. The parallel and perpendicular polarization 

curves can be seen in figure 5.2.  

The tails were manually matched at long times to overlap the electronic decay of 

PM597. This is necessary to correct for drift in the signal size or laser power. The 

anisotropy was calculated by equations 45 and 46 and is shown in figure 5.3. Anisotropy 

curves were fit with a stretched exponential function (𝐴 ∗ exp(−𝑡 𝜏⁄ )𝛽) where β = 1 

represents a single exponential. Rotation times (τ) ranged from 93.9 ps (C2MIM:BF4) to 

246.2 ps (C12MIM:BF4) and β values approached 0.8 for C8MIM:BF4 and C12MIM:BF4. 

Full fit parameters are shown in table 5.1. This indicated the presence of rate dispersion; 

however, the amount of rate dispersion was less than anticipated. The magnitude of the rate 

dispersion, assuming a heterogeneous mechanism, lies within the noise level of the 

MUPPETS experiment. It was not viable for this experiment to move forward.  

The second set of experiments measured the rotational anisotropy of PM597 in 

C12MIM:BF4 at varying mole fraction. Mole fractions of 0.2, 0.4, and 0.6 were measured. 

The rotational anisotropy of PM597 in pure acetonitrile was also measured. Polarization  

curves for the C12MIM:BF4 and acetonitrile experiments are shown in figure 5.5. Tail 

matching was performed for acetonitrile and χ = 0.2. The rotational decay for χ = 0.4 and 

χ = 0.6 was not complete within our two-nanosecond time window. Tail matching for χ = 

0.4 and χ = 0.6 was performed by measuring the rotational anisotropy of PM597 in toluene 

and making the same tail matching correction to the ionic liquid polarization curves. The 

sequence of experiments was: 1) C12MIM:BF4 (parallel) 2) toluene (parallel) 3) 

C12MIM:BF4 (perpendicular) 4) toluene (perpendicular). Anisotropy curves were fit with 

a stretched exponential function. The anisotropy in acetonitrile was found to be 
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exponential. The fits to the anisotropy of χ = 0.2, χ = 0.4, and χ = 0.6 had β values of about 

0.8. Full fit parameters are shown in table 5.2. The anisotropy in acetonitrile was found to 

be exponential. The fits to the anisotropy of χ = 0.2,  χ = 0.4, and χ = 0.6 had β values of 

about 0.8. Full fit parameters are shown in table 5.2. Rate dispersion was present at each 

mole fraction, but there was no increase of rate dispersion as the mole fraction of 

C12MIM:BF4 increased. As mentioned in the previous paragraph, the magnitude of the rate 

dispersion lies within the noise level of the MUPPETS experiment.  

5.4 Conclusions 

Recent work by the Maroncelli group112 has shown that the rotational anisotropy of 

solute molecules in C4MIM:BF4 is significantly non-exponential at low temperatures. 

When fit to a stretched exponential function, the stretching exponent ranged from 0.4 ≤ β 

≥ 0.8. The β values decreased significantly as the temperature decreased. The anisotropy 

of 9,10-dimethylacridinium in C4MIM:BF4 at 292 K had a β = 0.81 when fit to a stretched 

exponential. This result is in good agreement with the observations made in this chapter. 

The cause of rate dispersion in ionic liquids is an unanswered question that is worthy of 

exploration; however, the experimental conditions necessary to observe significant rate 

dispersion are not compatible with MUPPETS.  
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Table 5.1 Fit Parameter for the rotational anisotropy of PM597 in CnMIM:BF4 
Ionic Liquid A τrot β 

C2MIM:BF4 1.00 93.93 0.91 

C4MIM:BF4 1.00 133.37 0.87 

C8MIM:BF4 1.00 230.81 0.83 

C12MIM:BF4 1.00 246.17 0.81 
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Table 5.2 Fit parameters for the rotation anisotropy of PM597 in C12MIM:BF4 at varying 

mole fraction 

χ (C12MIM:BF4) A τrot β 

0.0 1 34.25 1.00 

0.2 1.01 253.76 0.80 

0.4 0.98 813.72 0.82 

0.6 0.99 1375.87 0.81 
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Figure 5.1 The structures of the ionic liquids 
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Figure 5.2 Parallel (black) and perpendicular (red) polarization curves for (a) C2MIM:BF4 

(b) C4MIM:BF4 (c) C8MIM:BF4 (d) C12MIM:BF4. χ = 0.2 for each ionic liquid.  
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Figure 5.3 Anisotropy curves are shown for C2MIM:BF4, C4MIM:BF4, C8MIM:BF4, and 

C12MIM:BF4. χ = 0.2 for each ionic liquid
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Figure 5.4 Parallel (black) and perpendicular (red) polarization curves for C12MIM:BF4 

at (a) χ = 0.0 (pure acetonitrile) (b) χ = 0.2 (c) χ = 0.4 (d) χ = 0.6
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Figure 5.5 Anisotropy curves are shown for C12MIM:BF4 at (a) χ = 0.0 (pure acetonitrile) 

(b) χ = 0.2 (c) χ = 0.4 (d) χ = 0.6. 
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APPENDIX A 

SUPPLEMENTAL INFORMATION FOR CHAPTER 4 

A1 Experimental Methods 

A1.1 Sample 

The sample consisted of an aqueous solution of sodium dodecyl sulfate (SDS, 200 

mM) and pyrromethene 597 (PM597, 52 µM) in a 1.0 mm flow cell at 22 °C (see Figure 

A.1).  The solution had an optical density of 0.39 at the excitation wavelength of 530 nm.  

At this concentration, the SDS forms micelles containing ~80 molecules.119-124  The 

micelles are crowded enough to have correlations in the inter-micelle positions, but they 

are not crowded enough to perturb the internal structure of the micelles.  To confirm this 

conclusion, 1D measurements at SDS concentrations of 150 mM and 100 mM with the 

same dye concentration were made, but showed no difference from the 200 mM sample.   

PM597 has simple photochemistry: high quantum yield, low triplet yield, weak 

excited-state absorption, good photostability and weak solvatochromism.116-118  The 

sample had an average of one PM597 molecule per 46 micelles, so dye interactions are not 

expected.  To confirm this expectation, the dye concentration was varied to give sample 

optical densities between 0.17–0.64.  No effect on the 1D measurements was found.   

PM597 is poorly soluble in water: a saturated solution has an optical density of 8×10−4 in 

1.0 mm.  The signal from PM597 independent of a micelle can be neglected.
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A1.2 Optical System 

The laser pulses were generated by a standard, 1-kHz Ti:sapphire laser system.  The 

signal from a white-light-seeded optical parametric generator was mixed with 800 nm 

pulses to generate pulses at 530 nm with a bandwidth of 150 cm-1.  At the sample, the 

pulses had a length of ~300 fs (not bandwidth limited) and an energy of 80 nJ/pulse. 

The MUPPETS current optical system is shown in Figure A.2.  Its design and 

operation have been described in detail elsewhere.12,35  The initial pulse is split equally in 

the vertical direction into first excitation (1), second excitation (2), and probe (3) by a 

transmission grating (G1).  Waveplates (WP) and polarizer P2 were used to adjust the 

polarizations at the sample to the required combinations (Figure A4a).  Extinction ratios 

were in the range 500–5000 at the sample.  A second grating (G2) further divided the pulses 

into nine equal intensity pulses (Figure A.2, left cross-section).  Three pulses were blocked 

to leave the six pulses used for the experiment (Figure A.2, right cross-section).  The 

differential heterodyne detection required unequal probe intensities at the sample.A1  One 

of the phase plates was also a neutral density filter (ND, optical density 1.0, pulse 3c).  A 

compensating variable neutral density (VND) filter was placed in beam 3a. 

In polarization measurements, it is common to make a “G-factor” correction by 

matching the tails of the signals at long times, when rotation is complete.  Because those  

times lie outside our 2-ns time window, we made several changes to the MUPPETS set-up 

to improve its stability across multiple scans:  (1) Fine angle adjustments were added to 

lens L5 to correct for residual coma.  (2) A magnifying doublet lens and camera (not 

shown) were used to image the beams at the sample position.  This system can detect self-

focusing, spherical aberration, horizontal and vertical coma, and horizontal and vertical 
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astigmatism.  Each of these problems can be systematically corrected by appropriate 

adjustments of the main (L4, L5) and meniscus (ML1, ML2) lenses.  (3) A slow response 

(300 ms) photodiode (PD3) independently measured fluctuations in the laser power, which 

were used to correct both 1D and 2D  measurements.  (4) Phase plates (PP) have been 

added to all the beams to allow phase shifts in the excitations.   

It was found that residual signal from low-order processes were a significant cause 

of long term drift and instability, so additional measures were taken to remove them by fast 

modulation.  The first excitation and probe were amplitude modulated by two choppers.  

The second excitation  (2a and 2b) was modulated by chopper C1; pulse 1c was modulated 

by chopper C2.  Both choppers operated at 250 Hz, but with a 90° phase shift, that is, 

shifted by one pulse period.  The signal was detected at 500 Hz with the phase set to give 

no signal when the pulse 1c was blocked.   

A2 1D Measurements 

Pump–probe measurements out to 2 ns were made on the same system using pulses 

1c and 3c.  The raw data are shown in Figure A.3. The time range was extended using 

measurements by time-correlated single-photon counting (150 ps FWHM instrument 

response function, 373 nm excitation, 560 nm detection) on a sample with an optical  

density of 0.10.  Anisotropy results for times >700 ps and electronic results for times >1 

ns were matched to the pump–probe data in the overlapping regions to create data sets over 

times from 1 ps – 10 ns.  Measurements were taken at parallel ΔA∥(τ), perpendicular 

( )A  and magic-angle ΔAm(τ) polarizations.  The amplitudes of the parallel and 

perpendicular decays were adjusted slightly to match the sum to the magic-angle results 

before calculating the anisotropy.   
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A3 2D Measurements 

The 2D signal ΔAp(τ2, τ1; φ) is a change in absorbance as a function of two time 

separations, τ1 and τ2, phase φ and polarization conditions p.  This signal was recorded as 

sets of scans along τ2 at a fixed value of τ1.  Scans were taken at each of the four polarization 

combinations shown in Figure A4a.  The (+ +/− −) and (+ −/− +) pairs should be identical.  

All four polarizations were measured to check for consistency and to improve averaging.  

The phase of the second excitation (beam 2b) was adjusted for either maximum positive 

(0°) or maximum negative (180°) signal.  Measurements at other phases at τ1 = 1 ps showed 

a constant phase, so only these two phases were needed.  All polarizations were measured 

at both phases, giving a total of eight scans in a set (Figure A4b).  These scans were 

combined to give 
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and 
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which are shown in Figure A4c. 

Because each set was typically taken on a separate day, their amplitudes and noise 

levels varied.  To correct this variation, a preliminary, multiexponential fit (Equation A60) 

was made to each fixed-τ1 curve to extract initial values, ΔA+ +(1ps, τ1) and ΔA+ −(1ps, τ1), 

and residuals.  The chi-squared values of the residuals were used to weight the later fitting.  

The amplitude of ΔA+ +(τ2, τ1) and  ΔA+ −(τ2, τ1) were individually adjusted to match the τ1 
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= 1 ps scan, assuming τ1–τ2 symmetry, ΔAp(τ2, 1ps) = ΔAp(1ps, τ1).  These adjustments 

effectively combine sequences of 1D slices into unified, 2D surfaces. 

The weighted sum of ΔA+ +(τ2, τ1) and ΔA+ −(τ2, τ1) (Equation 54) formed the 

electronic–electronic decays shown in Figures A4d and 4.2a.  For homogeneous electronic 

relaxation, the 2D result can be predicted from the 1D results: 

 
(2) (1) (1)
ee 2 1 e 2 e 1( , ) ( ) ( )C C C     (A58) 

(solid curves in Figure 4.2a, Table A.2).  These results matched the data.  Because the 1D 

results are more accurate, the results of equation A58 were used in equation A62 and to 

corrected the anisotropy–anisotropy results (equation A59) to the rotation–rotation decay 

(equation 54). 

The difference of ΔA+ +(τ2, τ1) and ΔA+ −(τ2, τ1) is the 2D anisotropy–anisotropy 

decay, 
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. (A59) 

An example is shown in Figure A.4d.  In the end, the anisotropy–anisotropy decay 

is divided by the electronic–electronic decay to give the rotation–rotation decay (Equation 

54, Figure 4.2b).  However, all the intermediate data reduction was done on this 

anisotropy–anisotropy decay. 

A4 Nonparametric Data Reduction 

A4.1 1D Spectrum 

The 1D anisotropy and electronic decay data were each fit to 
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  (1) (1)

a/e 1 a/e, 1
0

( ) exp
N

i i
i

C c T 


    (A60) 

with fixed Ti = 4
i
2 ps.  For the anisotropy decay, N = 5; for the electronic decay, N = 7.  

The fits are shown in Figure A.3 and the values of 
(1)

a/e,ic  are given in Table A.1.   

This fit does not have physical significance; it only encodes our expectation that 

the signal decays smoothly and monotonically.  Hundreds of data points containing both 

signal and noise are reduced to a few coefficients representing the signal.  Residuals from 

the fit represent the noise that is removed when the number of degrees of freedom is 

reduced.  The chi-squared of the fit could be decreased further by decreasing the spacing 

of the Ti and increasing the number of 
(1)

a/e,ic .  However, we would start “fitting the noise”; 

the result would be less smooth and would include more noise.   

This fit was used to calculate the 1D rate spectrum (equation 47), and this spectrum 

is further reduced to the final parameters,  and drot.  Although equation A60 is a specific 

functional form, it is chosen only for mathematical convenience, and it is only used as an 

intermediate representation of the signal.  Any other form that goes through the data equally 

well would give indistinguishable spectra and final parameters. 

The set of 
(1)

a/e,ic  can be regarded as a rate spectrum of the data.  However, rate 

spectra are never unique and many other spectra would represent the data equally well.  For 

example, the later part of the electronic decay is well fit by a single exponential with a 4.8 

ns time constant.  The negative coefficients at 512 and 32,768 ps are the result of 

representing it with exponentials with different, fixed time constants. 

rT
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A4.2 Initial 2D Spectrum 

A similar procedure was applied to the 2D anisotropy, but with the 2D extension of 

equation A60: 

 

   

   

   

5
(2) (2)

aa 2 1 aa, 2 1
, 0

2 1

5
(2)

aa, 2 1
0

( , ) exp exp

exp exp

exp exp

ij j i
j i
j i

i j

ii i i
i

C c T T

T T

c T T

   

 

 






  


  


  



 . (A61) 

Symmetry in τ2–τ1 and in the resulting coefficient matrix is enforced, 
(2) (2)

a, a,ij jic c , 

reducing the number of degrees of freedom to 21.  Ultimately, the 2D measurement holds 

only one piece of new information, the degree of heterogeneity.  Thus, even reducing the 

data to 21 degrees of freedom still leaves significant flexibility.   

The fit was done with singular-value decomposition, which allows the number of 

degrees of freedom to be systematically reduced by setting large singular values to zero.A2  

The fitting procedure forces the corresponding linear combinations of the 
(1)

a,ic  to zero, 

creating a smoother spectrum at the expense of a higher chi-squared.  Whether the higher 

chi-squared represents a loss of fidelity to the signal or a greater rejection of noise relies 

on the judgement of the analyst. 

The 2D anisotropy–anisotropy spectrum with eight degrees-of-freedom is shown in 

Figure A.5.  Two features are evident.  The main peak is strongly elongated along the 

diagonal, indicating strong rate heterogeneity.  In addition, there are weak cross-peaks near 

(2 ps, 2 ns).  These cross-peaks could be due to leakage of electronic–electronic signal into 
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the anisotropy–anisotropy measurements.  The electronic–electronic spectrum has similar 

cross-peaks between the fast solvation process and the slow electronic state lifetime.  The 

polarization conditions were calculated for collinear beams, whereas in the experiment, the 

beams intersect at angles up to 3° from the center line, slightly modifying the correct 

polarization angles.  This systematic error could allow electronic–electronic signal to leak 

into our anisotropy measurements.   

A4.3 Refined 2D Spectrum 

These observations led us to a more refined fitting procedure that allows us to 

include more of our theoretical expectations.  We used this function: 
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              (A62) 

The first line represents a fully heterogeneous anisotropy spectrum, as predicted 

from the 1D data.  Using this term incorporates our expectation that the 1D and 2D spectra 

are consistent with each other.  Using this term alone (Ae = 0, 
(2)

e,ijc  = 0), leaves only one 

degree of freedom in the fit, the amplitude Aa.  It gives the chi-squared shown by the green 

square in Figure A.6.  

The second term represents leakage of the electronic–electronic signal.  The 

coefficients 
(2)

ee,ijc are already determined, so only the amplitude Ae is varied.  Adding this 
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degree of freedom reduces the chi-squared significantly (blue square in Figure A6) with a 

small Ae.  

The third term in equation 62 creates deviations from heterogeneous behavior.  The 

coefficients 
(2)

aa,ijc  allow intensity to move from the diagonal regions to off-diagonal ones.  

Because the central peak is expected to broaden, the transfer was limited to near-diagonal 

regions of the spectrum, that is, to next-to-diagonal coefficients.  Attempts to include 

coefficient farther from the diagonal did not improve the fit. 

The coefficients 
(2)

aa,ijc  were fit while the amplitudes Aa and Ae were fixed at their 

previously determined values. The procedure was then iterated: The fit to Aa and Ae was 

repeated with fixed 
(2)

aa,ijc  (giving a final result, Ae = 4.7%) and then the 
(2)

aa,ijc  were refit 

with fixed Aa and Ae.  The reiteration gave only a small change.     

The squares in Figure A.6 shows the value of chi-squared with the number of 

degrees of freedom in the final fit.  The spectrum in Figure 4.3b and the remaining analysis 

were based on the fit with five degrees of freedom.  Based purely on measures internal to 

the data set, chi-squared and number of degrees of freedom, this description of the data is 

equivalent to the initial spectrum in Figure A.5.  However, the refined fit better incorporates 

external information: it gives a vertical projection that is in better agreement with the 1D 

kinetics (Figure 4.1b), it allows for leakage of the electronic–electronic signal, and the 

horizontal projection has quickly decaying tails that lie between the limiting heterogeneous 

and homogeneous limits (Figure 4.3b). 
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A.5 Approximating the Microviscosity Distribution 

The convolution inherent in kinetic measurements results in a loss of information 

(equation 51), so the 1D decay spectrum (Figure 4.1b) cannot be uniquely decomposed into 

its homogeneous and heterogeneous contributions.  Fortunately, the loss of information is 

not complete, and a representative decomposition can be made to illustrate the retained 

information.  The low-order moments of it can be recovered accurately; the loss of 

information primarily affects higher moments.   

The process uses cumulants κn, which are combination of moments.A3  They are 

additive under convolution.  Thus from equation 51, 

 
(1)

r hom het
ˆ ˆ[ ] [ ] [ ]n n nC C P      (A63) 

holds for the decay spectra.  The connection between rate and decay spectra 

(equation 49) leads to 

 
(1) (1) (1)

exp
ˆ ˆ[ ] [ ] [ ]n n nC C C    . (A64) 

Combining these equations gives a relationship between rate spectra, 

 
(1)

r hom het[ ] [ ] [ ]n n nC C P    . (A65) 

The rate spectrum of the 1D rotational decay is easy to find from the form used to 

represent it, equation A60.  We believe that the first four cumulants are meaningful.  They 

are given in Table A.3 

To provide a specific model, the homogeneous decay was taken to be a 

biexponential, 



www.manaraa.com

104 

 
/ /1 1

hom 2 2
( ) (1 ) (1 )

x x x x
C x b e b e  

    . (A66) 

with a geometric-mean (first moment) of zero.  The heterogeneous distribution is 

assumed to be a smooth, single-peaked function.  It should also have sharply defined 

maximum and minimum values, because the micelle should have well-defined maximum 

and minimum viscosities.  The beta distribution satisfies these criteria and can be easily 

adjusted to have the desired first four moments.126  It was used to model the heterogeneous 

distribution, 
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, (A67) 

where B(α,β) is the beta function.  Equation A67 holds for a< lnT< c; the distribution is 

zero elsewhere.  

The assignment of the cumulants proceeds as follows (see Table A.3).  Because the 

homogeneous decay is defined to have a zero 1st moment, the heterogeneous distribution 

takes the first moment of the 1D spectrum.  The 2D experiment determined that 87% of 

the 1D 2nd cumulant (drot) should be assigned to the heterogeneous second cumulant (dhet).  

The 2nd cumulant of the homogeneous decay is then the remaining 13% of drot.  We 

assumed that the kurtosis of the heterogeneous distribution (ratio of 4th and 2nd 

cumulantsS3) was the same as that of the 1D spectrum.  The 4th cumulant of the 

homogeneous decay was calculated by subtraction.  The 1st, 2nd and 4th cumulants of the 

homogeneous decay completely determine the constants in equation A66: b = −0.742, x+ 

= 2.12, x− = 0.550.  From these values, the 3rd moment of the homogeneous decay was 

calculated and subtracted from the 1D 3rd moment to give the heterogeneous 3rd moment.  
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The first four cumulants of the heterogeneous distribution were then known, so the 

parameters in equation A67 could be determined:126 a = ln (1.60 ps), c = ln (1.10 ns), α = 

3.25, β = 1.03. 

The rotation time of PM597 was measured in a number of solvents, as shown in 

Figure A.7.  All the decays were close to single exponential.  The figure reports geometric-

mean times versus viscosities.  The results were fit to 
rT  = Bη, with B = 31.6 ps/cP.  This 

formula was used to generate the microviscosity scale in Figure 4.4. 
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Ti (ps)  2 8 32 128 512 2048 8192 32,768 

Anisotropy b  −0.009 0.051 0.029 0.201 0.514 

 

0.214 — — 

Electronic c   0.050 0.007 0.005 0.012 −0.001 0.295 0.824 −0.192 

a
 See eq A60.  

b (1)
a,ic   

c (1)
e,ic   

Table A.1 Coefficients summarizing the 1D anisotropy and electronic decays
a
 



www.manaraa.com

107 

Table A.2 Coefficients summarizing the 2D anisotropy–anisotropy (top 
a
) and electronic–

electronic (bottom 
b
) decays. 

T
j
 (ps) \ T

i
 (ps) 2 8 32 128 512 2048 8192 32,768 

 2 
−0.003 

0.003 

0.002 

0.000 

— 

0.000 

— 

0.001 

— 

0.000 

— 

0.015 

— 

0.042 

— 

−0.010 

 8 
0.002 

0.000 

0.044 

0.000 

0.031 

0.000 

— 

0.000 

— 

0.000 

— 

0.002 

— 

0.005 

— 

−0.001 

 32 
— 

0.000 

0.031 

0.000 

−0.006 

0.000 

0.036 

0.000 

— 

0.000 

— 

0.001 

— 

0.004 

— 

−0.001 

 128 
— 

0.001 

— 

0.000 

0.036 

0.000 

0.119 

0.000 

0.031 

0.000 

— 

0.004 

— 

0.010 

— 

−0.002 

 512 
— 

0.000 

— 

0.000 

— 

0.000 

0.031 

0.000 

0.437 

0.000 

−0.003 

0.000 

— 

−0.001 

— 

0.000 

 2048 
— 

0.015 

— 

0.002 

— 

0.001 

— 

0.004 

−0.003 

0.000 

0.205 

0.087 

— 

0.243 

— 

−0.057 

 8192 
— 

0.042 

— 

0.005 

— 

0.004 

— 

0.010 

— 

−0.001 

— 

0.243 

— 

0.679 

— 

−0.158 

32,768 
— 

−0.010 

— 

−0.001 

— 

−0.001 

— 

−0.002 

— 

0.000 

— 

−0.057 

— 

−0.158 

— 

0.037 

a (2) (1) (1) (2)
aa, a, a, aa,ij i j ijc c c c  . See eq A62.  b (2) (1) (1)

ee, e, e,ij i jc c c . See eq A58. 
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Table A.3 Cumulants calculated on a Ln-T scale 

spectrum κ
1
 κ

2
 κ

3
 κ

4
 

rotational rate a 5.433 1.575 −1.633 7.946 

homogenous rate b     — 0.205 −0.205 0.247 

heterogeneous rate c 5.433 1.371 −1.427 6.014 

a (1)
r (ln )C T   

b (1)
hom(ln )C T  

c
P

het
(ln T ) 
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Figure A.1 Structures of pyrromethene 597 (PM597) and sodium dodecyl sulfate (SDS).
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Figure A.2 MUPPETS optical system: polarizers (P), lenses (L), transmission gratings (G), 

delay lines (DL), meniscus lenses (ML), phase plates (PP), neutral density filter (ND), 

masks (M), sample (S), pinhole (PH), and photodiodes (PD).
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Figure A.3 The  raw, 1D pump–probe data for PM597 in SDS micelles: parallel (ΔA∥(τ), 

black), perpendicular ( ( )A  red), and magic-angle (ΔAm(τ), blue) polarizations.  The 

scale changes from linear for times <1 ps to logarithmic for times >1 ps.  Data are shown 

as points, and fits to Equation A60 are shown as solid lines. 
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Figure A.4 The MUPPETS data for τ1 = 1 ps.  (a) The polarization of the first (1) and 

second (2) excitations and of the probe (3) are separated by the magic angle θm  [measured 

relative to (2)] to create four polarization combinations.  (b) The raw data ΔAp(τ2, τ1; φ) 

with colors corresponding to the polarization conditions in (a).  Positive and negative 

signals correspond to 0° and 180  phases, respectively.  (c) The signals ΔA+ +(τ2,τ1) (black) 

and ΔA− −(τ2, τ1) (red) are derived by combining the results in (a) (equations A56 and A57).  

(d) The signals from (c) are added to give the electronic–electronic decay 
(2)
ee 2 1( , )C    

(Equation 53, red) or subtracted to give the anisotropy–anisotropy decay (2)
aa 2 1( , )C    

(equation A59, black).  The time scales in (b) and (c) change from linear for times <1 ps to 

logarithmic for times >1 ps
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Figure A.5 The 2D anisotropy–anisotropy decay spectrum from the initial fitting to 

Equation A61 with eight degrees of freedom.  
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Figure A.6 Chi-squared versus the number of degrees of freedom for the refined fit to the 

2D data (equation A62).  Green (1 deg. freedom): for the 100% heterogeneous model. Blue 

(2 deg. freedom): with electronic–electronic leakage added.  Black: with homogeneous 

broadening added. 
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Figure A.7 The geometric-mean rotation time rT
 of PM597 in various solvents versus their 

macroscopic viscosities η (points) and a linear fit (line).   
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